让机器学习助力医疗领域

本文探讨了机器学习在医疗领域的应用,如糖尿病眼病和乳腺癌检测,强调了模型开发、验证、集成和实施的复杂性。同时,文章指出医生需要理解机器学习的基本原理,以评估其在临床工作中的适用性。通过合作和严谨的方法,机器学习有望对患者护理产生积极影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文 / Yun Liu,研究科学家和 Po-Hsuan Cameron Cheng,研究工程师,Google Health

将机器学习 (ML) 方法结合在医学领域并不新鲜,传统技术诸如决策树和逻辑回归等常用于推导既定的临床决策规则(如用于评估患者在冠心病预后风险的 TIMI 风险评分)。

近年来兴起一股在各种医疗应用中使用 ML 的浪潮(如从复杂的医疗记录中预测不良事件,以及提高基因组测序的准确性)。除了检测已知疾病外,ML 模型还可帮助梳理出过去未知的信号,如从视网膜眼底图像中检测出心血管疾病风险因素和屈光不正。

除了开发上述的这些模型外,了解如何将其运用到医疗工作流程中也很重要。先前的一些研究表明,在进行糖尿病眼部疾病分级诊断转移性乳腺癌时&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值