离散点求导的数学理论与方法

本文深入探讨了离散点求导的方法,通过泰勒级数展开近似求解一阶及多阶导数,介绍了向前、向后及中心差分公式,提升计算精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍如何对离散点进行求导。

对于一个点的值(函数上)我们可以通过泰勒级数展开,对其进行近似:
在这里插入图片描述
解出来一阶导数:
在这里插入图片描述
主要,我们就是靠这个式子来计算多阶的导数,如果把二阶以后的项去掉,那么一阶导数就是:
在这里插入图片描述
二阶导数就是:
在这里插入图片描述
为了提高精度,我们可以留下更多的项数:比如留下二阶项:
在这里插入图片描述
简化后:
在这里插入图片描述
、总结一下:
向前微分公式:(forward)
在这里插入图片描述
向后微分公式:(backward)
在这里插入图片描述
中间微分:(centered)
在这里插入图片描述

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值