机器学习
文章平均质量分 75
goto_past
这个作者很懒,什么都没留下…
展开
-
win10+cuda11.0+pytorch1.7.1安装教程
一、电脑配置检查 1. 检查电脑显卡类型 注意电脑显卡不是NVIDIA的忽略这一步,非NVIDIA显卡不能安装CUDA。 在桌面鼠标右键: 点击NVIDIA 控制面板->选择左下角 系统信息->组件 从第三幅图可以看出我的CUDA是11的版本,所以下面我将安装11版本的CUDA 二、更新你的NVIDIA驱动 进入NVIDIA官网:https://www.nvidia.cn/gefor...转载 2021-12-10 14:45:43 · 8709 阅读 · 2 评论 -
GNN图神经网络梳理
一、GCN 图卷积神经网络:Semi-Supervised Classification with Graph Convolutional Networks基于频谱域的图卷积神经网络,原理是通过独立于节点embedding的图拓扑结构定义用于聚集(过滤)邻居节点的权值。:本质仍是聚合邻居节点的信息,只不过可以通过数学变换得到如下的式子统一表示聚合邻居信息的过程。这样可能提高了速度但固定了GCN的聚合邻居信息的方式,导致了直推式学习的弊端。1、GCN的本质确实是利用全图进行节点的特征学习(参考:G原创 2021-08-17 20:27:40 · 1370 阅读 · 0 评论 -
T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction 用于交通流预测的时序GCN
T-GCN: A Temporal Graph Convolutional Network for Traffic PredictionAbstract准确、实时的交通预测是智能交通系统的重要组成部分,对城市交通规划、交通管理和交通控制具有重要意义。然而,由于受城市路网拓扑结构和动态随时间变化规律的制约,交通预测一直被认为是一个开放的科学问题。为了同时捕获网络的时空相关性,本文提出了一种基于神经网络的交通预测方法——时间图卷积网络(T-GCN)模型,该模型与图卷积网络(GCN)和门控递归单元(GRU)相原创 2021-02-06 15:17:41 · 4403 阅读 · 2 评论 -
EvolveGCN:动态图的参数演化图卷积网络 AAAI2020
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs论文链接.Abstract由于深度学习在欧几里得数据中的广泛应用,图表示学习重新成为一个趋势,它激发了非欧几里得领域(尤其是网络图)神经网络的各种创造性设计。随着这些图神经网络(GNN)在静态设置中的成功,我们进一步考虑图动态演化的实际场景。现有的方法通常利用节点嵌入,并使用递归神经网络(一般为 RNN)来调节嵌入和学习时间动态。这些方法需要了解一个节点的全部时间跨度(原创 2020-11-04 14:24:39 · 8626 阅读 · 10 评论 -
机器学习中的正则化
机器学习中的正则化以多核支持向量机说起以上函数为一个基于多核的支持向量机的目标函数 d是多核函数的参数 r(d)为正则项。根据今天深度机器学习课程所介绍,正则项的目的是尽量减小参数的数值大小,从而避免过拟合,即:以上目标函数可以直观表述为:其中,可以通过多项式近似法则得到:下面这张图展示了不同的拟合效果模型的分类能力正则化的思考过程模型对该数据的拟合能力越强,一定程度上反映了模型对特征的提取程度,图3分类全部是正确的,但是明显出现了过拟合,其实用性很低。同时,学习的时候需要更多的参原创 2020-10-12 22:38:50 · 192 阅读 · 0 评论