【论文笔记】A Foundational Approach to Mining Itemset Utilities from Databases

本文探讨了一种基于超市购物场景的高效用项集挖掘方法,详细介绍了事务效用和额外效用的计算方法,并解释了为何在高效用项集挖掘中,传统频繁项集挖掘的定理不再适用。通过分析项集效用的增减规律,揭示了高效用项集挖掘的难点所在。
摘要由CSDN通过智能技术生成

这是2004年的一篇讲高效用项集挖掘的论文,算是一篇科普性的文章。


 文章介绍了效用值的计算方法,但是是在超市购物的背景下的,分为一个事务效用值和额外效用值,事务效用值是在事务表中体现出来的,文中给出的是超市购物的事务表(表一),表中每一个Item下的数字表示在该事务中购买的量,例如T1事务中,Item A购买了一个,Item B购买数量为0,Item C购买数量为1,Item D购买数量为14。


图一  事务表
    额外效用值是事务表之外对每个Item定义的效用值,文章中是用每个Item的购买利润来定义的(图二)。

图二  额外效用值
 每一个Item的效用值都需要由一个效用计算方程 来定义,其中是事务效用值, 是额外效用值, 要满足同时对 单调递增。 (为什么一定要单调递增?)
    一个k项集 中项 的效用值 是所有包含有项集 的事务中项 的效用和;
    一个k项集的效用是该项集中所有项的效用和。
 
    以上讲的是效用的计算方法,文章的后一部分讲的是高效用项集挖掘中的一些理论。
    传统的频繁项集挖掘遵循一个思想就是“频繁项集的子集也是频繁的”,但是这个定理不适用于高效用项集挖掘,因为项集在增加项的过程中,它的效用值是有可能增加也有可能减少的,不符合向下封闭的特性,这就是高效用项集挖掘的难点所在。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值