【书生大模型实战营】基础岛 第6关 OpenCompass评测InternLM-1.8B实践

【书生大模型实战营】基础岛 第6关 OpenCompass评测InternLM-1.8B实践

任务

使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 ceval 数据集上的性能,记录复现过程并截图。

1. 环境配置

conda create -n opencompass python=3.10
conda activate opencompass
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y

# 注意:一定要先 cd /root
cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .


apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf

2. 数据准备

解压评测数据集到 /root/opencompass/data/ 处。(注意: 上方在git clone opencompass 时一定要将 opencompass clone 到 /root 路径下)

cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

在这里插入图片描述
列出所有跟 InternLM 及 C-Eval 相关的配置

python tools/list_configs.py internlm ceval

在这里插入图片描述

3. 启动测评(10% A100 8GB资源)

打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py ,贴入以下代码

from opencompass.models import HuggingFaceCausalLM


models = [
    dict(
        type=HuggingFaceCausalLM,
        abbr='internlm2-1.8b-hf',
        path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
        tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
        model_kwargs=dict(
            trust_remote_code=True,
            device_map='auto',
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            use_fast=False,
            trust_remote_code=True,
        ),
        max_out_len=100,
        min_out_len=1,
        max_seq_len=2048,
        batch_size=8,
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]

确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出。

#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值