区间贪心问题

本文探讨了多种区间问题的解决方案,包括贪心算法的应用来最大化怪物吃糖的数量,以及如何合并、分组和覆盖区间。在怪物吃糖问题中,通过排序并交替选择最高能量糖果,可以达到最优解。对于区间合并,按端点排序后依次合并相邻交集。区间分组和覆盖问题同样依赖于排序和贪心策略。在区间选点和最大不相交区间数量问题中,通过选择关键点和避免区间相交,可以找到最佳策略。
摘要由CSDN通过智能技术生成

贪心

吃糖

https://codeforces.com/problemset/problem/436/A
题意
有那么个怪物,要吃糖,糖果有两种1和0,每颗糖有一个高度,怪物吃了糖会获得对应的能量,而怪物有个初始能量值可以保证怪物的跳起吃糖,且怪物很作,吃糖要交替着吃。现在问,怪物最多能吃到几颗糖

解题思路:贪心,对糖果的能量从高到低进行排序,然后,每次都去吃能吃到的能量最高的糖果,这样可以保证能吃到最多的糖果,先吃1和0的结果会有不同,所以要分情况讨论

AC代码

#include <iostream>
#include <string>
#include <algorithm>
#include <math.h>

using namespace std;
const int maxn = 2e3 + 10;
#define IOS std::ios::sync_with_stdio(false);std::cin.tie(0);

struct node {
	int t, h, m;
}A[maxn],B[maxn];

bool cmp(node a,node b){
	if(a.m == b.m)
		return a.h < b.h;
	else
		return a.m > b.m;
}
int sum1, sum2;

int main(){
	IOS;
	int n, x;
	cin >> n >> x;
	int t, h, m;
	
	for(int i = 1;i <= n;++ i){
		cin >> t >> h >> m;
		A[i].t = t;A[i].h = h;A[i].m = m;
		B[i].t = t;B[i].h = h;B[i].m = m;
	}
	sort(A+1,A+n+1,cmp);
	sort(B+1,B+n+1,cmp);
	
	int flag1 = 0,flag2 = 1;
	int power1 = x, power2 = x;
	
	for(int i = 1;i <= n;++ i){
		if(power1 >= A[i].h && A[i].t == flag1){
			power1 += A[i].m;
			sum1 ++;
			A[i].t = -1;
			flag1 = 1 - flag1;
			i = 0;
		}
	} 
	for(int i = 1;i <= n;++ i){
		if(power2 >= B[i].h && B[i].t == flag2){
			power2 += B[i].m;
			sum2 ++;
			B[i].t = -1;
			flag2 = 1 - flag2;
			i = 0;
		}
	} 
	
	int ans = max(sum1, sum2);
	cout << ans ;
	return 0;
} 

区间合并

给定 n 个区间 [li,ri][li,ri],要求合并所有有交集的区间。
注意如果在端点处相交,也算有交集。
输出合并完成后的区间个数。
例如:[1,3][1,3] 和 [2,6][2,6] 可以合并为一个区间 [1,6][1,6]。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含两个整数 l 和 r。
输出格式
共一行,包含一个整数,表示合并区间完成后的区间个数。
数据范围
1≤n≤100000,
−109≤li≤ri≤109
输入样例:

5
1 2
2 4
5 6
7 8
7 9

输出样例:

3

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;

int n;
vector<PII> query;

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
    {
        int l, r;
        cin >> l >> r;
        query.push_back({l, r});
    } 

    sort(query.begin(), query.end());

    int cnt = 0, st = -2e9;

    for (auto item : query)
    {
        if (item.first > st) cnt ++ ;
        st = max(st, item.second);
    }

    cout << cnt << endl;
    return 0;
}

区间分组

给定 N 个闭区间 [ai,bi][ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。
输出最小组数。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示最小组数。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:

3
-1 1
2 4
3 5

输出样例:

2

AC思路
在这里插入图片描述

AC代码

#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdio>

using namespace std;

const int N = 100010;

int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const
    {
        return l < W.l;
    }
}range[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
    {
        int l, r;
        scanf("%d%d", &l, &r);
        range[i] = {l, r};
    }

    sort(range, range + n);

    priority_queue<int, vector<int>, greater<int>> heap;
    for (int i = 0; i < n; i ++ )
    {

        if (heap.empty() || heap.top() >= range[i].l){
            heap.push(range[i].r);
        }
        else {
            heap.pop();
            heap.push(range[i].r);
        }
    }

    printf("%d\n", heap.size());

    return 0;
}

区间覆盖

给定 N 个闭区间 [ai,bi][ai,bi] 以及一个线段区间 [s,t][s,t],请你选择尽量少的区间,将指定线段区间完全覆盖。
输出最少区间数,如果无法完全覆盖则输出 −1。
输入格式
第一行包含两个整数 s 和 t,表示给定线段区间的两个端点。
第二行包含整数 N,表示给定区间数。
接下来 N行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需最少区间数。
如果无解,则输出 −1。
数据范围
1≤N≤105,
−109≤ai≤bi≤109,
−109≤s≤t≤109
输入样例:

1 5
3
-1 3
2 4
3 5

输出样例:

2

AC思想
在这里插入图片描述

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const
    {
        return l < W.l;
    }
}range[N];

int main()
{
    int st, ed;
    scanf("%d%d", &st, &ed);
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
    {
        int l, r;
        scanf("%d%d", &l, &r);
        range[i] = {l, r};
    }

    sort(range, range + n);

    int res = 0;
    bool success = false;
    for (int i = 0; i < n; i ++ )
    {
        int j = i, r = -2e9;
        while (j < n && range[j].l <= st)
        {
            r = max(r, range[j].r);
            j ++ ;
        }

        if (r < st)
        {
            res = -1;
            break;
        }

        res ++ ;
        if (r >= ed)
        {
            success = true;
            break;
        }

        st = r;
        i = j - 1; 
    }

    if (!success) res = -1;
    printf("%d\n", res);

    return 0;
}

区间选点

给定 N 个闭区间 [ai,bi][ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。
输出选择的点的最小数量。
位于区间端点上的点也算作区间内。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需的点的最小数量。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:

3
-1 1
2 4
3 5

输出样例:

2

AC代码

#include <iostream>
#include <algorithm>

using namespace std;
const int N = 100010;
int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const
    {
        return r < W.r;
    }
}range[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d%d", &range[i].l, &range[i].r);

    sort(range, range + n);

    int res = 0, ed = -2e9;
    for (int i = 0; i < n; i ++ )
        if (range[i].l > ed)
        {
            res ++ ;
            ed = range[i].r;
        }

    printf("%d\n", res);

    return 0;
}

最大不相交区间数量
给定 N 个闭区间 [ai,bi][ai,bi],请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。
输出可选取区间的最大数量。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示可选取区间的最大数量。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:

3
-1 1
2 4
3 5

输出样例:

2

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const
    {
        return r < W.r;
    }
}range[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d%d", &range[i].l, &range[i].r);

    sort(range, range + n);

    int res = 0, ed = -2e9;
    for (int i = 0; i < n; i ++ )
        if (ed < range[i].l)
        {
            res ++ ;
            ed = range[i].r;
        }

    printf("%d\n", res);

    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值