贪心
吃糖
https://codeforces.com/problemset/problem/436/A
题意
有那么个怪物,要吃糖,糖果有两种1和0,每颗糖有一个高度,怪物吃了糖会获得对应的能量,而怪物有个初始能量值可以保证怪物的跳起吃糖,且怪物很作,吃糖要交替着吃。现在问,怪物最多能吃到几颗糖
解题思路:贪心,对糖果的能量从高到低进行排序,然后,每次都去吃能吃到的能量最高的糖果,这样可以保证能吃到最多的糖果,先吃1和0的结果会有不同,所以要分情况讨论
AC代码
#include <iostream>
#include <string>
#include <algorithm>
#include <math.h>
using namespace std;
const int maxn = 2e3 + 10;
#define IOS std::ios::sync_with_stdio(false);std::cin.tie(0);
struct node {
int t, h, m;
}A[maxn],B[maxn];
bool cmp(node a,node b){
if(a.m == b.m)
return a.h < b.h;
else
return a.m > b.m;
}
int sum1, sum2;
int main(){
IOS;
int n, x;
cin >> n >> x;
int t, h, m;
for(int i = 1;i <= n;++ i){
cin >> t >> h >> m;
A[i].t = t;A[i].h = h;A[i].m = m;
B[i].t = t;B[i].h = h;B[i].m = m;
}
sort(A+1,A+n+1,cmp);
sort(B+1,B+n+1,cmp);
int flag1 = 0,flag2 = 1;
int power1 = x, power2 = x;
for(int i = 1;i <= n;++ i){
if(power1 >= A[i].h && A[i].t == flag1){
power1 += A[i].m;
sum1 ++;
A[i].t = -1;
flag1 = 1 - flag1;
i = 0;
}
}
for(int i = 1;i <= n;++ i){
if(power2 >= B[i].h && B[i].t == flag2){
power2 += B[i].m;
sum2 ++;
B[i].t = -1;
flag2 = 1 - flag2;
i = 0;
}
}
int ans = max(sum1, sum2);
cout << ans ;
return 0;
}
区间合并
给定 n 个区间 [li,ri][li,ri],要求合并所有有交集的区间。
注意如果在端点处相交,也算有交集。
输出合并完成后的区间个数。
例如:[1,3][1,3] 和 [2,6][2,6] 可以合并为一个区间 [1,6][1,6]。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含两个整数 l 和 r。
输出格式
共一行,包含一个整数,表示合并区间完成后的区间个数。
数据范围
1≤n≤100000,
−109≤li≤ri≤109
输入样例:
5
1 2
2 4
5 6
7 8
7 9
输出样例:
3
AC代码
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
int n;
vector<PII> query;
int main()
{
cin >> n;
for (int i = 0; i < n; i ++ )
{
int l, r;
cin >> l >> r;
query.push_back({l, r});
}
sort(query.begin(), query.end());
int cnt = 0, st = -2e9;
for (auto item : query)
{
if (item.first > st) cnt ++ ;
st = max(st, item.second);
}
cout << cnt << endl;
return 0;
}
区间分组
给定 N 个闭区间 [ai,bi][ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。
输出最小组数。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示最小组数。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
AC思路
AC代码
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdio>
using namespace std;
const int N = 100010;
int n;
struct Range
{
int l, r;
bool operator< (const Range &W)const
{
return l < W.l;
}
}range[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
int l, r;
scanf("%d%d", &l, &r);
range[i] = {l, r};
}
sort(range, range + n);
priority_queue<int, vector<int>, greater<int>> heap;
for (int i = 0; i < n; i ++ )
{
if (heap.empty() || heap.top() >= range[i].l){
heap.push(range[i].r);
}
else {
heap.pop();
heap.push(range[i].r);
}
}
printf("%d\n", heap.size());
return 0;
}
区间覆盖
给定 N 个闭区间 [ai,bi][ai,bi] 以及一个线段区间 [s,t][s,t],请你选择尽量少的区间,将指定线段区间完全覆盖。
输出最少区间数,如果无法完全覆盖则输出 −1。
输入格式
第一行包含两个整数 s 和 t,表示给定线段区间的两个端点。
第二行包含整数 N,表示给定区间数。
接下来 N行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需最少区间数。
如果无解,则输出 −1。
数据范围
1≤N≤105,
−109≤ai≤bi≤109,
−109≤s≤t≤109
输入样例:
1 5
3
-1 3
2 4
3 5
输出样例:
2
AC思想
AC代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n;
struct Range
{
int l, r;
bool operator< (const Range &W)const
{
return l < W.l;
}
}range[N];
int main()
{
int st, ed;
scanf("%d%d", &st, &ed);
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
int l, r;
scanf("%d%d", &l, &r);
range[i] = {l, r};
}
sort(range, range + n);
int res = 0;
bool success = false;
for (int i = 0; i < n; i ++ )
{
int j = i, r = -2e9;
while (j < n && range[j].l <= st)
{
r = max(r, range[j].r);
j ++ ;
}
if (r < st)
{
res = -1;
break;
}
res ++ ;
if (r >= ed)
{
success = true;
break;
}
st = r;
i = j - 1;
}
if (!success) res = -1;
printf("%d\n", res);
return 0;
}
区间选点
给定 N 个闭区间 [ai,bi][ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。
输出选择的点的最小数量。
位于区间端点上的点也算作区间内。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需的点的最小数量。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
AC代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n;
struct Range
{
int l, r;
bool operator< (const Range &W)const
{
return r < W.r;
}
}range[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d%d", &range[i].l, &range[i].r);
sort(range, range + n);
int res = 0, ed = -2e9;
for (int i = 0; i < n; i ++ )
if (range[i].l > ed)
{
res ++ ;
ed = range[i].r;
}
printf("%d\n", res);
return 0;
}
最大不相交区间数量
给定 N 个闭区间 [ai,bi][ai,bi],请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。
输出可选取区间的最大数量。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示可选取区间的最大数量。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
AC代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n;
struct Range
{
int l, r;
bool operator< (const Range &W)const
{
return r < W.r;
}
}range[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d%d", &range[i].l, &range[i].r);
sort(range, range + n);
int res = 0, ed = -2e9;
for (int i = 0; i < n; i ++ )
if (ed < range[i].l)
{
res ++ ;
ed = range[i].r;
}
printf("%d\n", res);
return 0;
}