25、聚类列表再探与多样化分类器集成方法

聚类列表再探与多样化分类器集成方法

在数据处理和机器学习领域,聚类和分类器集成是两个重要的研究方向。聚类有助于对数据进行分组和组织,而分类器集成则能提高分类的准确性和泛化能力。下面将介绍聚类列表再探相关的Rev - LC索引以及一种新的多样化分类器集成方法CDEBMTE。

1. Rev - LC索引

1.1 理论基础

Rev - LC索引的构建基于一定的理论条件,要求$m = O(n^β)$(其中$β < 1$且接近1),使得$n/m = O(n^{1 - β})$足够小,以产生紧凑的桶。其预处理成本为$O(nm^α + m^3/n)$($α ≤ 1$)。在实际计算中,当$m^3/n$足够小(即$n/m > \sqrt{2}$)时,$O(m^3/n)$的开销可以忽略不计,构建Rev - LC索引的处理时间可近似为$O(nm^α)$。

1.2 并行化实现

与LC算法不同,Rev - LC索引的构建并行化较为简单。只需对算法进行简单修改,在特定步骤并行搜索最近邻,其余部分序列化执行,这种并行版本称为Parallel Rev - LC (PRev - LC)。

1.3 数据集描述

实验使用了六个在单位超立方体中随机生成向量的数据库,分别生成了维度为4、8、12、16、20和24的$n = 10^6$个随机向量。实验中不使用坐标来丢弃元素,而是将距离作为黑盒,仅需一个距离函数来索引数据。

1.4 实验结果

1.4.1 构建时间

选择四维的百万向量数据集进行构建时间测试,结果如下表所示:
| 方法 | n/m

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值