- 博客(338)
- 资源 (105)
- 收藏
- 关注
原创 基于MATLAB的战术手势识别功能的设计与实现
基于MATLAB的战术手势识别功能的设计与实现1选题背景与研究意义武警部队作为国家重要武装力量,履行着国家赋予的神圣使命,在执行解救人质、捕歼暴恐分子等任务时,确保良好的通信联络是分队行动中通信保障的重点。低劣的通信质量在实战中将导致分队无法及时得到上级行动命令、失去对战场情况的把控,指挥部无法及时了解作战情况,造成整个行动指挥的失控,最终导致丢失战场控制权,进而完全丧失战斗力。随着现代技术的发展,各种无线、有线通信联络方式飞速发展,有效保障了分队行动中的良好通信联络。但是,战场环境的多
2023-12-15 10:14:10 893
原创 MATLAB车牌识别
MATLAB可以用于车牌识别的任务,以下是一个基本的车牌识别流程:数据准备:收集一组带有车牌的图像作为训练数据。这些图像可以来自不同视角、不同光照条件和不同车牌样式的车辆。数据预处理:对图像进行预处理,例如去噪、增强对比度、调整图像大小等操作,以便更好地进行后续处理。车牌定位:使用图像处理和计算机视觉技术,例如边缘检测、颜色分割和形状分析,来实现车牌的定位。通过定位可以将车牌从整个图像中提取出来。字符分割:对提取得到的车牌图像进行字符
2024-07-19 23:22:32 222
原创 matlab编程进行神经网络进行手写数字识别
用matlab的rands函数来实现网络权值的初始化,网络结构为输入层35,隐藏层34,输出层10,学习速率为,隐藏层激励函数为sigmoid函数。首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。神经网络是由很多神经元组成,可以分为输入,输出,隐含层。
2024-01-22 10:18:02 536
原创 神经网络应用于手写数字识别-matlab
用matlab的rands函数来实现网络权值的初始化,网络结构为输入层35,隐藏层34,输出层10,学习速率为,隐藏层激励函数为sigmoid函数。首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。神经网络是由很多神经元组成,可以分为输入,输出,隐含层。
2024-01-22 10:17:30 524
原创 基于神经网络的手写数字识别系统的设计与实现
目 录摘要 ⅠABSTRACT Ⅱ第一章 绪论 11.1手写体数字识别研究的发展及研究现状 11.2神经网络在手写体数字识别中的应用 21.3 论文结构简介 3第二章 手写体数字识别 42.1手写体数字识别的一般方法及难点 42.2 图像预处理概述 52.3 图像预处理的处理步骤 52.3.1 图像的平滑去噪 52.3.2 二值话处理 62.3.3 归一化 72.3.4 细化 82.4 小结 9第三章 特征提取 103.1 特征提取的概述 103.2 统计特征 103.
2024-01-22 10:16:58 1125
原创 基于MATLAB手写体数字识别程序
在手写体数字识别中,提取了16个特征作为训练特征,分别采用了最小距离法,KNN法,BP神经网络算法,这些算法中,KNN 算法识别率最高,有93.97%,BP神经网络算法其次,有85.2%,最低的是最小距离法,为84.35%,总体来说,取16个特征还是比较少,当特征数量逐渐增加以后,识别率有所提高,但特征数量的选取也要适量,否则容易造成过拟合,导致训练已经很好,但加入测试数据反而错误率会相当高。将图像转换为文本格式存储,文档中只包含0和1,共计1934个样本,每类样本数目大致200个,测试样本共计946个。
2024-01-22 10:15:18 450
原创 基于MATLAB手写体数字识别程序设计
在手写体数字识别中,提取了16个特征作为训练特征,分别采用了最小距离法,KNN法,BP神经网络算法,这些算法中,KNN 算法识别率最高,有93.97%,BP神经网络算法其次,有85.2%,最低的是最小距离法,为84.35%,总体来说,取16个特征还是比较少,当特征数量逐渐增加以后,识别率有所提高,但特征数量的选取也要适量,否则容易造成过拟合,导致训练已经很好,但加入测试数据反而错误率会相当高。将图像转换为文本格式存储,文档中只包含0和1,共计1934个样本,每类样本数目大致200个,测试样本共计946个。
2024-01-22 10:14:02 490
原创 MATLAB的图像处理字母识别
在将截取下来的图像放入 digitalRec目录下 并改名为 .bmp作为测试输入图像。%注意A的size(长和宽都需被定义成5的倍数,因为后面要被5除)新建图像命名为10~14.jpg,用以输出识别出的图像。% A 被分成5*5=25个cell。所以根据样本库中的字母对应的数字编号。%%提取数字的边界,生成新的图。运行digRec01.m。'该数字被识别为:'
2024-01-21 21:30:29 1010
原创 基于MATLAB的图像处理字母识别
在将截取下来的图像放入 digitalRec目录下 并改名为 .bmp作为测试输入图像。%注意A的size(长和宽都需被定义成5的倍数,因为后面要被5除)新建图像命名为10~14.jpg,用以输出识别出的图像。% A 被分成5*5=25个cell。所以根据样本库中的字母对应的数字编号。%%提取数字的边界,生成新的图。运行digRec01.m。'该数字被识别为:'
2024-01-21 21:29:05 849 1
原创 基于matlab的手写体数字识别系统
其次对上一阶段中获得的5000张数字图像(数字矩阵)每一张图像都进行分块处理,再将每一个小的分块看成是一个具体的单位,统计其中有黑色像素存在的小的像素点的个数,并与总像素点的个数做除法得到存在黑色像素的占比大小,将这个占比大小作为每个具体分块单位的特征数据,计入特征矩阵。将最终的simulink仿真结果保存在一个矩阵中,通过将这个矩阵的元素与对应的客观真实的标签矩阵进行比较,统计出预测正确的数目,再与总预测数目相比较得到预测正确的数目占预测总数目的百分比,最终得到的即为预测的准确度[6]。
2024-01-21 21:27:54 376
原创 基于matlab的手写体数字识别系统研究
其次对上一阶段中获得的5000张数字图像(数字矩阵)每一张图像都进行分块处理,再将每一个小的分块看成是一个具体的单位,统计其中有黑色像素存在的小的像素点的个数,并与总像素点的个数做除法得到存在黑色像素的占比大小,将这个占比大小作为每个具体分块单位的特征数据,计入特征矩阵。将最终的simulink仿真结果保存在一个矩阵中,通过将这个矩阵的元素与对应的客观真实的标签矩阵进行比较,统计出预测正确的数目,再与总预测数目相比较得到预测正确的数目占预测总数目的百分比,最终得到的即为预测的准确度[6]。
2024-01-21 21:26:58 375
原创 基于BP神经网络的手写数字识别实验
其中影响力很大的一个领域就是知识图库(Ontology),WordNet是在开放环境中建立的一个较大且有影响力的知识图库,也有不少研究人员尝试将Wikipedia中的知识整理成知识图库,但是建立知识图库一方面需要花费大量的人力和物力,另一方面知识图库方式明确定义的知识有限,不是所有的知识都可以明确地定义成计算机可以理解的固定格式。很大一部分无法明确定义的知识,就是人类的经验,如何让计算机跟人类一样从历史的经验中获取新的知识,这就是机器学习需要解决的问题。层神经元的状态只影响下一层神经元的状态。
2024-01-21 21:25:17 1083
原创 基于BP神经网络的手写数字识别实验报告
其中影响力很大的一个领域就是知识图库(Ontology),WordNet是在开放环境中建立的一个较大且有影响力的知识图库,也有不少研究人员尝试将Wikipedia中的知识整理成知识图库,但是建立知识图库一方面需要花费大量的人力和物力,另一方面知识图库方式明确定义的知识有限,不是所有的知识都可以明确地定义成计算机可以理解的固定格式。很大一部分无法明确定义的知识,就是人类的经验,如何让计算机跟人类一样从历史的经验中获取新的知识,这就是机器学习需要解决的问题。层神经元的状态只影响下一层神经元的状态。
2024-01-21 21:24:29 1025
原创 MATLAB仿真图像分割技术
目 录摘要 Abstract 引言 1 图像分割技术 1.1 图像工程与图像分割 1.2 图像分割的方法分类 2 图像分割技术算法综述 2.1 基于阈值的图像分割技术 2.2边缘检测法 2.3 区域分割法 2.4 基于水平集的分割方法 2.5 分割算法对比表格 3基于水平集的图像分割 3.1 水平集方法简介 3.2 水平集方法在图像分割上的应用 3.3 仿真算法介绍 3.4 实验仿真及其结果 结论 致 谢 参考文献
2024-01-21 21:23:15 917
原创 图像分割技术与MATLAB仿真
目 录摘要 Abstract 引言 1 图像分割技术 1.1 图像工程与图像分割 1.2 图像分割的方法分类 2 图像分割技术算法综述 2.1 基于阈值的图像分割技术 2.2边缘检测法 2.3 区域分割法 2.4 基于水平集的分割方法 2.5 分割算法对比表格 3基于水平集的图像分割 3.1 水平集方法简介 3.2 水平集方法在图像分割上的应用 3.3 仿真算法介绍 3.4 实验仿真及其结果 结论 致 谢 参考文献
2024-01-21 21:21:43 878
原创 基于形态学处理的指纹识别matlab
特征点提取的点为端点和交叉点,遍历细化图的每一个像素点,端点的判别方法为八领域点两两相减取绝对值求和如果值为2则为端点(周围只有一个为1的白色点)和为6时为交叉点(周围有三值为1的白色点)。求每个端点距离其他端点的距离,找取距离大于r的端点。因为各种采集原因(油脂水分等)会使指纹粘连断裂,会影响后续的特征提取和识别,接下来会去除指纹中的空洞和毛刺,如果当前位置点值为0(背景)该点的四邻域点(上下左右)的和大于3则为毛刺,空洞的判断方法为该点为白色(背景)的四周为黑色(前景)八领域点两的和为0,则为空洞。
2024-01-21 21:19:12 930
原创 基于形态学处理的指纹识别matlab仿真
特征点提取的点为端点和交叉点,遍历细化图的每一个像素点,端点的判别方法为八领域点两两相减取绝对值求和如果值为2则为端点(周围只有一个为1的白色点)和为6时为交叉点(周围有三值为1的白色点)。求每个端点距离其他端点的距离,找取距离大于r的端点。因为各种采集原因(油脂水分等)会使指纹粘连断裂,会影响后续的特征提取和识别,接下来会去除指纹中的空洞和毛刺,如果当前位置点值为0(背景)该点的四邻域点(上下左右)的和大于3则为毛刺,空洞的判断方法为该点为白色(背景)的四周为黑色(前景)八领域点两的和为0,则为空洞。
2024-01-21 21:18:09 902
原创 基于MATLAB软件的指纹识别
由于在数字处理图像中,所有图像均以矩阵形式存在,所取的曲线上的点坐标都是整数,取点距离为1,长度为4的曲线还能保证计算值的过程中用到的点均严格满足在这条曲线上,从而保证了计算的精确性。给定指纹图像的任意一点,在其邻域内做一条包围该点的闭合曲线,沿该闭合曲线逆时针旋转一周,通过计算得到的旋转角度总和不同对应了不同类型的点,中心点对应的值为180度,三角点对应的值为负180度,而一般图像区域点对应。因此,为避免二值化引入的毛刺空洞等伪特征带来的影响,保护指纹的细节特征,对所得的二值化图进行去毛刺和空洞。
2024-01-21 21:17:36 1075
原创 基于MATLAB软件的指纹识别研究
由于在数字处理图像中,所有图像均以矩阵形式存在,所取的曲线上的点坐标都是整数,取点距离为1,长度为4的曲线还能保证计算值的过程中用到的点均严格满足在这条曲线上,从而保证了计算的精确性。给定指纹图像的任意一点,在其邻域内做一条包围该点的闭合曲线,沿该闭合曲线逆时针旋转一周,通过计算得到的旋转角度总和不同对应了不同类型的点,中心点对应的值为180度,三角点对应的值为负180度,而一般图像区域点对应。因此,为避免二值化引入的毛刺空洞等伪特征带来的影响,保护指纹的细节特征,对所得的二值化图进行去毛刺和空洞。
2024-01-21 21:16:38 819
原创 基于MATLAB的指纹识别系统【GUI】
图像预处理包括四个步骤:图像灰度化、滤波增强、二值化、细化,对指纹图像进行预处理后,去除了原图像的冗余部分,方便后续的识别处理;’.*’},‘载入指纹’);set(handles.text1,‘string’,‘指纹图象Ⅰ处理完毕!set(handles.text1,‘string’,‘处理指纹Ⅰ。set(handles.text1,‘string’,‘载入指纹1!errordlg(‘没有选中文件’,‘出错’);2、灰度、二值化、细化、特征点、光滑处理等主函数。title(‘指纹图象’)
2024-01-21 21:16:01 383
原创 基于MATLAB的指纹识别系统【论文,GUI】
图像预处理包括四个步骤:图像灰度化、滤波增强、二值化、细化,对指纹图像进行预处理后,去除了原图像的冗余部分,方便后续的识别处理;’.*’},‘载入指纹’);set(handles.text1,‘string’,‘指纹图象Ⅰ处理完毕!set(handles.text1,‘string’,‘处理指纹Ⅰ。set(handles.text1,‘string’,‘载入指纹1!errordlg(‘没有选中文件’,‘出错’);2、灰度、二值化、细化、特征点、光滑处理等主函数。title(‘指纹图象’)
2024-01-21 21:15:31 400
原创 基于MATLAB的指纹识别系统
接下来,指纹辨识软件建立指纹的数字表示特征数据,一种单方向的转换,可以从指纹转换成特征数据但不能从特征数据转换成为指纹,而两枚不同的指纹不会产生相同的特征数据。越多的地方实施了指纹养老金发放系统,这一现象得到了彻底改善,没有当事人的指纹,对应的养老金是不可能被领取的。最后,通过计算机模糊比较的方法,把两个指纹的模板进行比较,计算出它们的相似程度,最终得到两个指纹的匹配结果。LVQ神经网络模型的优势在于网络结构简单,只通过内部单元的互相作用,就可以完成十分复杂模式识别的分类处理,具有很好的模式识别特性。
2024-01-21 21:13:47 1084
原创 基于MATLAB的指纹识别系统
接下来,指纹辨识软件建立指纹的数字表示特征数据,一种单方向的转换,可以从指纹转换成特征数据但不能从特征数据转换成为指纹,而两枚不同的指纹不会产生相同的特征数据。越多的地方实施了指纹养老金发放系统,这一现象得到了彻底改善,没有当事人的指纹,对应的养老金是不可能被领取的。最后,通过计算机模糊比较的方法,把两个指纹的模板进行比较,计算出它们的相似程度,最终得到两个指纹的匹配结果。LVQ神经网络模型的优势在于网络结构简单,只通过内部单元的互相作用,就可以完成十分复杂模式识别的分类处理,具有很好的模式识别特性。
2024-01-20 03:04:08 847
原创 MATLAB指纹识别系统[GUI]
MATLAB指纹识别系统[GUI,预警]一、课题介绍随着生物识别技术的不断发展,人们发现每个人的指纹具有唯一性和不变性。因此指纹识别技术逐步发展为一种新的身份识别方式,并且凭借其良好的安全可靠性,大有取代传统身份识别方式的趋势。本文简要介绍了指纹识别的基本步骤,分别是指纹图像预处理、指纹特征提取、指纹匹配。在图像预处理中,依次介绍了规格化处理、图像增强、二值化处理和细化处理的方法。预处理后将得到一幅宽度为一个像素的细化二值图像,然后通过特定的端点和交叉点的特征进行指纹匹配。实验表明,该方法效果良好。二、
2024-01-20 03:03:13 1238
原创 MATLAB指纹识别系统[GUI,预警]
MATLAB指纹识别系统[GUI,预警]一、课题介绍随着生物识别技术的不断发展,人们发现每个人的指纹具有唯一性和不变性。因此指纹识别技术逐步发展为一种新的身份识别方式,并且凭借其良好的安全可靠性,大有取代传统身份识别方式的趋势。本文简要介绍了指纹识别的基本步骤,分别是指纹图像预处理、指纹特征提取、指纹匹配。在图像预处理中,依次介绍了规格化处理、图像增强、二值化处理和细化处理的方法。预处理后将得到一幅宽度为一个像素的细化二值图像,然后通过特定的端点和交叉点的特征进行指纹匹配。实验表明,该方法效果良好。二、
2024-01-20 03:02:34 873
原创 MATLAB人脸识别系统设计与仿真【GUI】
MATLAB人脸识别系统设计与仿真【GUI解界面】第一章 绪论本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。1.1 研究背景自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。在进行人工智能的研究中,人们一直想
2024-01-20 03:01:46 881
原创 MATLAB人脸识别系统设计与仿真【GUI界面】
MATLAB人脸识别系统设计与仿真【GUI解界面】第一章 绪论本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。1.1 研究背景自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。在进行人工智能的研究中,人们一直想
2024-01-20 03:01:05 979
原创 硬币识别GUI博文
读取原图,灰度变换,边缘检测,连通域分析,滤除干扰,计算圆形面积和半斤,根据半斤和面积得出金额及统计总的数额。该课题为基于边缘检测的硬币识别系统。
2024-01-20 03:00:02 345
原创 数字图像处理人民币面额自动识别
人民币面额自动识别单击图标添加图片流程各部分详细说明读入一张100元人民币图片。、图像边缘检测提取边缘检测共有两种方法,一种是使用 edge 函数进行边缘检测;另一种是二值化+ 图像填充 + 提取边缘的方法。使用 edge 函数进行边缘检测,选择 Sobel 算子。如图, sobel 算子边缘检测后的图像但是由于内部白色纹路较多, 为了不影响边缘截取,故选择第二种方法:二值化 + 图像填充+ 提取边缘。
2024-01-20 02:59:26 907
原创 基于数字图像处理的人民币纸币面值识别
综合分析铝硅酸盐矿物和铝土矿综合利 用的研究成果表明,铝土矿选矿尾矿的综合利 用研究应集中在三个主要方面:材料领域的基 础和应用研究;纸币识别对准确率要求很高,识别算法应在保 证高识别率的基础上尽可能的提高识别速度。人民币纸币的识别技术不仅可以应用在自动售货售票上,也可以应用到银行的自动存取款机,手机营业厅的自动交费机等。在细线化处理的时候可以很好的弱化污迹带来的影响,在用句法方法进行识别的时候可以尽。提出的识别方法能很好的克服字符上有污迹影响识别率的问题,同时也很好的解决了字。定位纸币要识别的特征区域。
2024-01-20 02:57:02 984
原创 基于matlab的纸币面额面向识别方法设计
因为不同面额的纸币有明显差异的区域,这些区域为特征块识别法提供了基础, 这些区域涵盖纸币里的盲文和数字等,泛用的就是通过纸币表面能表达纸币面额的数字来识别。CIS是最新型线性图像传感器,最大特点小巧轻便,当它工作时,LED光源发出光,照到待采集的物体表面,反射光线之后,经聚焦成像于光电传感器的阵列上,被转成电荷储存起来。这几个步骤间又有很大关系,预处理的结果将会影响特征提取的方法和质量,根据不同的提取特征,我们会采用不同的匹配算法,最后得到的输出结果可能不尽相同。纸币图像中产生噪声,方式多样,类型繁多。
2024-01-20 02:53:29 958
原创 基于图像处理的硬币个数识别系统
基于图像处理的硬币个数识别系统基于图像处理的硬币个数识别摘 要数字图像处理是实现图像增强、复原、编码、压缩等,其主要为改善图像的质量,以人为对象,且以改善人的视觉效果为目的。目前,图像处理系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。
2024-01-20 02:52:55 929
原创 基于 matlab 的三种面值人民币的自动识别
随着科技的发展,很多行业都出现了基于人民币纸币识别技术的智能化无人收费系统,节省大量人力资源。人民币纸币的识别技术不仅可以应用在自动售货售票上,也可以应用到银行的自动存取款机,手机营业厅的自动交费机等。目前已有的识别方法主要是利用统计方法进行识别,如尺寸比较法、模板匹配、人工神经网络等。以不同面值人民币自动识别方法的应用日益广泛为背景,本小组提出多种通过利用matlab 软件、图像处理技术,实现对第五版人民币 20 元、
2024-01-20 02:51:50 905
原创 基于matlab的人民币面额识别
本小组提出使用matlab软件,利用软件对图像处理的超强能力,在保证识别准确率的前提下对100元、50元和20元的人民币进行快速有效的识别。取5和2的靠左的一小部分进行比较(红框圈的),数字5后两根蓝线之间的距离小于上面两根蓝线的距离,而2恰恰相反。本文通过分析第五版人民币的特征,利用纸币中央数字的特征提取和识别的方法,通过matlab软件实现对第五版人民币的100元、50元和20元的识别。%%-------------【课程设计课题】100元,50元,20元人民币的识别---------------%%
2024-01-20 02:51:13 916
原创 MATLAB人民币识别系统
本设计为基于MATLAB的人民币识别系统。先利用radon进行倾斜校正,根据不同纸币,选择不同维度的参数识别纸币金额,有通过RGB分量识别100元;通过面额图像的宽度识别1元、5元;通过RGB分量识别 20元 与 50元。%%%%%检测Radon变换矩阵中的峰值所对应的列坐标%%%%%%%%%%求纸币列起始位置和终止位置%%%%%%%%%%求纸币行起始位置和终止位置%%%%%%去除聚团灰度值小于10000的部分。%通过RGB分量判断 20 与 50。%采用sobel算子进行边缘检测。%图像聚类、填充图像。
2024-01-20 02:50:16 882
原创 数字图像matlab运动物体检测
从差分图像中,很容易发现目标运动信息,再通过对差分图像的后续处理,确定目标在图像上的位置。在刚开始进行试验室,由于对这种工具及语言不了解,对自己能否完成实验产生了怀疑,当随着慢慢的了解,发现其实并不像想象中的那么难,只要自己肯投入精力去学习,这并不是一件困难的作业。由于本文基本的差分法处理图像,基本原理主要是先通过灰度值变换,获得两幅图像,之后两幅图像作差,获得二值图像,然后将每个像素值作和,通过阈值比较,检测两幅图像的差异程度,其中差异程度可以根据图像的要求自己设定,这个在最后的。
2024-01-20 02:49:18 885
原创 数字图像matlab-运动物体检测
从差分图像中,很容易发现目标运动信息,再通过对差分图像的后续处理,确定目标在图像上的位置。在刚开始进行试验室,由于对这种工具及语言不了解,对自己能否完成实验产生了怀疑,当随着慢慢的了解,发现其实并不像想象中的那么难,只要自己肯投入精力去学习,这并不是一件困难的作业。由于本文基本的差分法处理图像,基本原理主要是先通过灰度值变换,获得两幅图像,之后两幅图像作差,获得二值图像,然后将每个像素值作和,通过阈值比较,检测两幅图像的差异程度,其中差异程度可以根据图像的要求自己设定,这个在最后的。
2024-01-20 02:48:30 935
原创 MATLAB运动目标检测系统
最后关于运动分析和智能监控方面,随着我国经济的发展,老龄化问题日益突出,其中“空巢老人”现象尤其引人关注,预测未来三十年,中国的老龄人口总量将占总人口数的30%以上,虽然解决老龄化问题势在必行,但是目前智能养老体系如生活照料、心理抚慰、应急救助、健康保健、法律援助等方面尚未建立完善。本设计采用差影法,做好背景图,将测试图和背景图作差对比,留下人体的轮廓,计算最外接矩形,计算矩形的长宽比例,根据比例来确定人体属于站立,蹲坐还是卧躺。其次在交通运输方面,根据跟踪车辆的运动轨迹,预防事故发生。
2024-01-18 16:45:51 379
原创 人体姿势博文文章
最后关于运动分析和智能监控方面,随着我国经济的发展,老龄化问题日益突出,其中“空巢老人”现象尤其引人关注,预测未来三十年,中国的老龄人口总量将占总人口数的30%以上,虽然解决老龄化问题势在必行,但是目前智能养老体系如生活照料、心理抚慰、应急救助、健康保健、法律援助等方面尚未建立完善。本设计采用差影法,做好背景图,将测试图和背景图作差对比,留下人体的轮廓,计算最外接矩形,计算矩形的长宽比例,根据比例来确定人体属于站立,蹲坐还是卧躺。其次在交通运输方面,根据跟踪车辆的运动轨迹,预防事故发生。
2024-01-18 16:44:53 359
原创 基于MATLAB的运动物体轨迹跟踪
摘要视频运动目标检测与跟踪算法是计算机视觉领域的一个核心课题,也是智能视频监控系统的关键底层技术。它融合了图像处理、人工智能等领域的研究成果,已经广泛应用于安保监控、智能武器、视频会议、视频检索等各个领域。因此,检测与跟踪算法研究具有极其重要的理论意义和实用价值。运动目标检测与跟踪涉及到计算机图像处理、视频图像处理、模式识别、以及人工智能等诸多领域,广泛地应用于军事、工业、生活等各个方面。研究内容分为三个方面:图像的预处理、运动目标的检测和运动目标的跟踪。在图像的预处理方面,采用均值滤波,抑制噪声;
2024-01-18 16:43:50 1457
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人