运用matlab编程进行神经网络进行手写数字识别。
实验过程:
一、BP神经网络
神经网络是由很多神经元组成,可以分为输入,输出,隐含层。
BP神经网络的特点:信号前向传递,信号反向传播。若输出存在误差,根据误差调整权值和阈值,使网络的输出接近预期。
在用BP神经网络进行预测之前要训练网络训练过程如下:
1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。
2.计算隐含层输出
3.计算输出层输出
4.误差计算
5.权值更新
6.阈值更新
7.判断迭代是否结束
二、模型建立
数据集介绍:
数据集包含0-9这10个数字的手写体。是放在10个文件夹里,文件夹的名称对应存放的手写数字图片的数字,每个数字500张,每张图片的像素统一为28*28。
识别流程:
首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。为了方面,这里的神经网络的创建,训练和测试采用matlab函数来实现。
运行流程:
1.确定神经网络的输入,输出。
输入是BP神经网络很重要的方面,输入的数据是手写字符经过预处理和特征提取后的数据。预处理有二值化,裁剪掉空白的区域,然后再统一大小为7050为特征提取做准备。特征提取采用的是粗网格特征提取,把图像分成35个区域,每个