此题是经典的动态规划的题:设c[i][j] 表示第一个字串从开始到 i 的位置,和第二个字串从开始到 j 的位置的最长公共字串的长度,那么我们可以根据题目得知一下条件
1.如果pFirstStr[i+1]==pSecondStr[j+1],那么c[i+1][j+1]=c[i][j]+1;
2.如果pFirstStr[i+1] != pSecondStr[j+1],那么c[i+1][j+1]= 0;
知道了了这两点程序应该很好写出来!
//动态规划,最长公共字串
//2015/12/25
#include <iostream>
#include <string>
using namespace std;
int main()
{
int c[100][100], len1, len2,max,x,y;
string str1, str2;
//获取数据
cin >> str1 >> str2;
//初始化
memset(c, 0, sizeof(int)* 10000);
len1 = str1.size();
len2 = str2.size();
max = 0;
//动态规划为c[][]填值
for (int i = 0; i < len1; i++)
{
for (int j = 0; j < len2; j++)
{
//将大写字母转换成小写,因为不区分大小写
if (str1[i] >= 'A'&&str1[i] <= 'Z')
{
str1[i] = str1[i] - 'A' + 'a';
}
if (str2[j] >= 'A'&&str2[j] <= 'Z')
{
str2[j] = str2[j] - 'A' + 'a';
}
if (str1[i] == str2[j])
{
c[i + 1][j + 1] = c[i][j] + 1;
}
if (c[i + 1][j + 1]>max)
{
max = c[i + 1][j+1];
}
}
}
cout << max << endl;
return 0;
}
结论:最长公共子序列要比这个难一点不过也是经典的动态规划题目!