977.有序数组的平方
题目如下:
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
提示:
- 1 <= nums.length <= 104
- -104 <= nums[i] <= 104
- nums 已按 非递减顺序 排序
leetcode题目链接:977.有序数组的平方
思路
暴力解法
这个地方排序没有直接用API,而是使用了冒泡排序,主要是为了更直观看出它的时间复杂度O(n2)
代码如下:
class Solution {
public int[] sortedSquares(int[] nums) {
for (int i = 0; i < nums.length; i++) {
nums[i] *= nums[i];
}
return bubbleSort(nums);
}
// 冒泡排序
private int[] bubbleSort(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
return arr;
}
}
双指针法
nums 已按 非递减顺序 排序,表明数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
那为什么还要起始位置平方做比较呢?因为负数的平方可能就是最大值。
所以定义了两个指针:
- left:指向起始位置
- right:指向终止位置
代码如下:
class Solution {
public int[] sortedSquares(int[] nums) {
int left = 0; // 指向起始位置
int right = nums.length - 1; // 指向终止位置
int[] result = new int[nums.length]; // 定义一个新数组result,和nums一样的大小
int k = nums.length - 1; // 让k指向result数组终止位置
while(left <= right) { // 注意这里要i <= j,因为最后要处理两个元素
if (nums[left] * nums[left] < nums[right] * nums[right]) {
result[k--] = nums[right] * nums[right];
right--;
} else {
result[k--] = nums[left] * nums[left];
left++;
}
}
return result;
}
}
执行过程
时间复杂度为:O(n)
209.长度最小的子数组
题目如下:
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1,
numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
leetcode题目链接:209.长度最小的子数组
思路
暴力解法
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int result = Integer.MAX_VALUE; // 最终的结果
for (int i = 0; i < nums.length; i++) { // 设置子序列起点为i
int sum = 0; // 子序列的数值之和
for (int j = i; j < nums.length; j++) { // 设置子序列终止位置为j
sum += nums[j];
if (sum >= target) { // 一旦发现子序列和超过了s,更新result
result = Math.min(result, j - i + 1);
break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == Integer.MAX_VALUE ? 0 : result;
}
}
但是这个算法在leetcode上会超时。

时间复杂度:O(n2)
空间复杂度:O(1)
滑动窗口
滑动窗口,就是不断的调节子序列的起始位置和终止位置,得出我们要想的结果。
在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。
滑动窗口则只用一个for循环,表示 滑动窗口的终止位置。
如图所示:
窗口:满足其和 ≥ target 的长度最小的连续子数组。
窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
我们通过不断更新窗口的长度得到子序列。
代码如下:
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int left = 0; // 滑动窗口的起始位置
int sum = 0;
int result = Integer.MAX_VALUE; // 首先把长度取最大
for (int right = 0; right < nums.length; right++) {// 滑动窗口的终止位置
sum += nums[right];
while(sum >= target) {// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
result = Math.min(result, right - left + 1);
sum -= nums[left++];// 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == Integer.MAX_VALUE ? 0 : result;
}
}
- 时间复杂度:O(n)
- 空间复杂度:O(1)
59.螺旋矩阵II
题目如下:
给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。
示例 1:
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1
输出:[[1]]
提示:
- 1 <= n <= 20
leetcode题目链接:59.螺旋矩阵II
思路
这一道题我从来没有见过,一点思路都没有。
看了题解才明白是想要考察模拟过程。
模拟顺时针画矩阵的过程:
填充上行从左到右
填充右列从上到下
填充下行从右到左
填充左列从下到上
由外向内一圈一圈这么画下去。
难点在于对每条边坚持左闭右开的原则。
千万不要画每一条边的时候,一会左开右闭,一会左闭右闭,一会又来左闭右开…
代码如下:
class Solution {
public int[][] generateMatrix(int n) {
int loop = 0; // 控制循环次数,需要控制每一条边遍历的长度,每次循环右边界收缩一位
int count = 1; // 定义填充数字
int res[][] = new int[n][n];
int start = 0; // 每次循环的开始点(start, start)
int i,j;
while(loop++ < n/2) {// 判断边界后,loop从1开始
// 从左到右
for (j = start; j < n - loop; j++ ) {
res[start][j] = count++;
}
// 从上到下
for (i = start; i < n - loop; i++) {
res[i][j] = count++;
}
// 从右到左
for (; j >= loop; j--) {
res[i][j] = count++; // 执行完j为0
}
// 从下到上
for (; i >= loop; i--) {
res[i][j] = count++; // 执行完i为1
}
start++;
}
if (n % 2 == 1) {// 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
res[start][start] = count;
}
return res;
}
}
- 时间复杂度为: O(n2):
- 空间复杂度为: O(1)
补充:
i++:先将i赋值于表达式,然后i执行++运算。
++i:先i执行++运算,然后将i赋值于表达式。
两个的区别在于,前一个表达式值是i,后一个表达式值是i+1,对于i来说,执行后,i都+1。
I–与 --i同理