Numpy基础
文章平均质量分 81
大笨牛@
终身学习者
展开
-
【Numpy】数组的基本操作
文章目录前言基本操作改变数组形状类转置操作改变数组维数连接数组拆分数组平铺数组增加和删除元素重新排列元素前言基本操作改变数组形状类转置操作改变数组维数连接数组拆分数组平铺数组增加和删除元素重新排列元素...原创 2021-06-29 19:40:11 · 246 阅读 · 0 评论 -
【Numpy】拆分数组
文章目录前言1. split2. array_split3. dsplit4. hsplit5. vsplitReference前言本篇总结、介绍Numpy数组(ndarray)的基本操作之一——拆分数组 [1]。1. splitnumpy.split(ary, indices_or_sections, axis=0):将一个数组拆分为多个子数组,每个子数组都是原始数组的视图ary:类数组。待拆分数组indices_or_sections:整数或一维类数组整数:例如n,表示数组ary将沿指原创 2021-06-29 19:33:51 · 5429 阅读 · 0 评论 -
【Numpy】类转置操作
文章目录前言1. moveaxis2. rollaxis3. swapaxes4. transposeReference前言本篇总结、介绍Numpy数组(ndarray)的基本操作之一——类转置操作 [1]。1. moveaxisnumpy.moveaxis(a, source, destination):将数组(a)的轴(source)移动到新的位置(destination),其他轴维持原有顺序不变a:数组对象source:整数或整数序列。待移动的轴的原始位置destination:整数或原创 2021-06-29 19:32:39 · 1854 阅读 · 0 评论 -
【Numpy】平铺数组
文章目录前言1. tile2. repeatReference前言本篇总结、介绍Numpy数组(ndarray)的基本操作之一——平铺数组 [1]。1. tilenumpy.tile(A, reps):将A沿着指定的轴复制多次A:类数组。输入数组reps:类数组。指示A沿每个轴复制的次数>>> arr = np.array([[0,1],[2,3]])>>> arrarray([[0, 1], [2, 3]]) >原创 2021-06-29 10:55:54 · 1753 阅读 · 0 评论 -
【Numpy】重新排列元素
文章目录前言1. flip、flipud、fliplr2. reshape3. roll4. rot90Reference前言本篇总结、介绍Numpy数组(ndarray)的基本操作之一——重新排列元素 [1]。1. flip、flipud、fliplrnumpy.flip(m, axis=None):沿给定轴(axis)翻转数组中元素的顺序。数组的形状被保留,但元素被重新排序m:类数组。操作对象axis:None、或整数、或整数序列,可选参数。指示沿其翻转的一个或多个轴None:沿输入数原创 2021-06-27 20:06:21 · 2536 阅读 · 0 评论 -
【Numpy】增加和删除元素
文章目录前言1. delete2. insert3. append4. resize5. trim_zeros6. uniqueReference前言1. deletenumpy.delete(arr, obj, axis=None):2. insert3. append4. resize5. trim_zeros6. uniqueReference原创 2021-06-27 16:51:40 · 6439 阅读 · 1 评论 -
Python和Numpy中的赋值、浅拷贝与深拷贝
文章目录1. Python中的不可变数据类型和可变数据类型2. Python中的赋值与深浅拷贝2.1 赋值2.2 浅拷贝2.3 深拷贝3. Numpy ndarray的赋值与深浅拷贝3.1 赋值3.2 浅拷贝3.3 深拷贝4. 总结Reference1. Python中的不可变数据类型和可变数据类型在正式讨论Python中的赋值、浅拷贝、深拷贝之前,我们先来了解一下Python中的不可变数据类型和可变数据类型。 参考文献[1]中给出的不可变数据类型:当该数据类型的对应变量的值发生了改变,那么它对应的内原创 2021-06-25 20:30:03 · 3665 阅读 · 5 评论 -
【Numpy】连接数组
文章目录前言1. concatenate2. stack3. block4. vstack5. hstack6. dstack7. column_stack8. row_stackReference前言本篇总结、介绍Numpy数组(ndarray)的基本操作之一——连接数组 [1]。1. concatenatenumpy.concatenate((a1, a2, …), axis=0, out=None, dtype=None, casting=“same_kind”):沿现有的轴连接一系列数组原创 2021-06-22 21:08:01 · 1690 阅读 · 0 评论 -
【Numpy】改变数组维数
文章目录前言1. atleast_1d、atleast_2d、atleast_3d2. broadcast3. broadcast_to4. broadcast_arrays5. expand_dims6. squeezeReference前言本篇总结、介绍Numpy数组(ndarray)的基本操作之一——改变数组维数 [1]。1. atleast_1d、atleast_2d、atleast_3dnumpy.atleast_1d(*arys):将输入转换为维度至少为1的数组。如果输入为标量,则会被转原创 2021-06-21 20:28:15 · 1305 阅读 · 0 评论 -
【Numpy】改变数组形状
文章目录前言1. reshape2. ravel3. ndarray.flattenReference前言本篇总结、介绍数组的基本操作之一——改变数组形状 [1]。1. reshapenumpy.reshape(a, newshape, order=‘C’):在不改变数据的情况下为数组赋予新的形状a:类数组(array_like)。待重塑数组newshape:整数(一维数组)或者整数列表/元组(高维数组)等。重塑之后的数组形状(shape)。需要注意的是重塑之后的数组形状要与待重塑数组的形状原创 2021-06-21 19:06:01 · 6895 阅读 · 0 评论 -
【Numpy】数组的创建
文章目录前言1. 从列表等其他Python的结构进行转换2. 使用Numpy内部功能函数2.1 arange2.2 zeros2.3 ones2.4 empty2.5 full2.6 eye2.7 linspace3. 使用特殊的库函数前言1. 从列表等其他Python的结构进行转换2. 使用Numpy内部功能函数2.1 arange2.2 zeros2.3 ones2.4 empty2.5 full2.6 eye2.7 linspace3. 使用特殊的库函数...原创 2021-06-18 23:32:37 · 3183 阅读 · 0 评论