python科学数据库
文章平均质量分 84
python科学数据库
Grateful_Dead424
这个作者很懒,什么都没留下…
展开
-
机器学习-数据科学库(第一天)
01.数据分析的介绍什么是数据分析数据分析是用适当的方法对收集来的大量数据进行分析,帮助人们作出判断,以便采取适当行动。数据分析流程02.jupyter和conda的使用03.matplotlib的基础绘图为什么要学习matplotlib能将数据进行可视化,更直观的呈现 使数据更加客观、更具说服力matplotlib基本要点axis轴,指的是x或者y这种坐标轴...原创 2021-08-10 15:45:08 · 284 阅读 · 0 评论 -
机器学习-数据科学库(第二天)
09.绘制散点图绘制散点图假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规律?a= [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23] b=[26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,原创 2021-08-11 17:39:57 · 378 阅读 · 0 评论 -
机器学习-数据科学库(第三天)
14.numpy的数组的创建什么是numpy一个在Python中做科学计算的基础库,重在数值计算,也是大部分PYTHON科学计算库的基础库,多用于在大型、多维数组上执行数值运算(数组就是列表、列表嵌套列表等)import numpy as npt1 = np.array([1,2,3])print(t1)print(type(t1))t2 = np.array(range(10))print(t2)t3 = np.arange(10)print(t3)print(t3.dtyp原创 2021-08-13 18:46:50 · 238 阅读 · 1 评论 -
机器学习-数据科学库(第四天)
23.pandas的series的了解为什么要学习pandasnumpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我们处理其他类型的数据pandas的常用数据类型Series 一维,带标签数组 DataFrame 二维,Series容器 pandas之Series创建import pandas as pdt1 = pd.Series([1,2,15,3,4])print(t1)t2 = pd.Series([1,2,15,3...原创 2021-08-20 17:36:31 · 150 阅读 · 0 评论 -
机器学习-数据科学库(第五天)
31.数据的合并和分组聚合——字符串离散化的案例字符串离散化的案例刚刚我们学会了数据分合并,那么接下来,我们按照电影分类(genre)信息把数据呈现出来import numpy as npimport pandas as pdfrom matplotlib import pyplot as pltfile_path = "/Users/zhucan/Desktop/IMDB-Movie-Data.csv"df = pd.read_csv(file_path)temp_list =原创 2021-09-01 14:53:21 · 96 阅读 · 0 评论 -
机器学习-数据科学库(第六天)
37.pandas时间序列01现在我们有2015到2017年25万条911的紧急电话的数据,请统计出出这些数据中不同类型的紧急情况的次数,如果我们还想统计出不同月份不同类型紧急电话的次数的变化情况,应该怎么做呢?import matplotlib.pyplot as pltimport pandas as pdimport numpy as npdf = pd.read_csv("/Users/zhucan/Desktop/911.csv")temp_list = df["title原创 2021-09-02 16:43:38 · 193 阅读 · 0 评论