机器学习算法评估指标——3D目标跟踪

本文详细介绍了3D目标跟踪的评估指标,包括单目标跟踪的ALE、AOR、Precision plot、Success plot、TRE和SRE,以及多目标跟踪的AMOTA和AMOTP。这些指标用于量化跟踪算法的精度、鲁棒性和准确性,旨在提升3D目标跟踪系统的整体性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

与2D目标跟踪类似,3D目标跟踪可以分为单目标跟踪和多目标跟踪,首先介绍单目标跟踪(SOT)算法的常用评估指标;其次介绍多目标跟踪(MOT)算法的常用评估指标。

单目标跟踪

传统的评估tracker的方式是:在测试序列上运行一遍该跟踪算法(其中第一帧以ground truth作初始化),然后计算average precision或sucess rate。我们把这种只在测试序列上运行一遍的评估方法叫做one-pass evaluation (OPE)。然而tracker对初始化可能比较敏感,不同的起始帧可能对performance有很大的影响。因此,还需要对算法的鲁棒性进行评估,包括时间鲁棒性评估(TRE)和空间鲁棒性评估(SRE)。接下来详细介绍OPE和Robustness的评估指标。

ALE(Average Location Error)

  • 定义:平均定位误差,即预测框与真实框中心位置的欧式距离取帧平均
  • 用途:用来判断两个框的靠近程度

AOR(Average Overlap Rate)

 

Overlap Rate threshold

  • 定义:平均重叠率,即预测的b-box与ground truth的交并比取帧平均
  • 范围:0~100%
  • 用途:用来判断两个框的重叠程度
  • Location Error thre

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值