Ai
文章平均质量分 96
落樱弥城
无无
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Context Compressing in Agent Application
这篇论文提出了两种针对大语言模型上下文压缩的创新方法:ICAE(In-Context Autoencoder)和CCM(Compressed Context Memory)。ICAE通过编码器-解码器架构,将长上下文压缩为记忆槽,并采用双目标训练策略(自编码和文本续写)来保持信息完整性。CCM则专注于在线交互场景,通过动态压缩KV缓存和条件LoRA技术实现高效推理。两种方法都显著降低了内存和计算开销,同时保持了模型性能。ICAE特别适合固定长文本压缩,而CCM更适合持续增长的对话场景。这些技术为突破LLM上原创 2025-09-16 20:56:27 · 968 阅读 · 0 评论 -
Memory Implement in Agent Application
文章摘要 MemoryBank是一种增强大语言模型长期记忆能力的新机制,通过三大核心功能实现智能化交互:1)多层记忆存储系统,按时间顺序记录对话并生成分层摘要;2)双塔密集检索模型实现高效记忆检索;3)基于遗忘曲线的动态更新机制,采用指数衰减模型模拟人类记忆规律。系统以JSON格式存储用户数据,包括对话历史、性格分析和事件总结,通过自动提炼关键信息减少冗余。该机制使AI能够回忆历史交互、深度理解语境并适应个性化需求,显著提升长期对话质量。原创 2025-09-14 15:51:54 · 1248 阅读 · 0 评论 -
MemGPT: Towards LLMs as Operating Systems
MemGPT借鉴操作系统内存管理思想,提出分层内存架构解决LLM上下文窗口限制。核心将LLM上下文视为"物理内存",外部存储为"磁盘",通过函数调用实现数据交换。系统包含主上下文(系统指令、工作区、FIFO队列)和外部存储(召回存储、归档存储)。关键技术包括队列管理器控制上下文溢出、函数执行器实现数据调入调出、以及支持多函数链式调用的控制流。源码分析显示,MemoryBlock实现主内存管理,文件系统模块处理外部存储,调度器负责上下文重建与摘要压缩。当token超限时原创 2025-09-12 21:45:37 · 1042 阅读 · 0 评论 -
MemoryBank论文和源码分析
层次化记忆存储(历史 → 摘要 → 全局)。基于 FAISS 的向量检索,确保高效查找。遗忘曲线驱动的动态记忆更新,模拟人类遗忘与强化。灵活 Prompt 设计,支持摘要、画像与策略生成。原创 2025-09-11 22:05:20 · 1008 阅读 · 0 评论 -
Memory in LLM Agent
记忆的本质记忆是 LLM Agent 在长时交互中实现“连续性”和“个性化”的关键。从短期上下文缓存(Context Window)到长期持久化存储(Vector DB、Knowledge Base),记忆让 Agent 超越单次调用的限制。记忆的类型与机制短期记忆:基于上下文窗口的即时信息。长期记忆:借助向量数据库、索引检索机制保存用户信息。工作记忆:用于任务执行阶段的动态存储。这些机制的有机组合,塑造了智能体的“人格”和“认知连续性”。记忆的管理策略(Policy)原创 2025-09-10 22:07:56 · 784 阅读 · 0 评论 -
Prompt Engineering to Context Engineering
从Prompt Engineering到Context Engineering的演进反映了LLM应用的发展趋势。早期依靠精心设计的Prompt引导模型输出,但随着模型能力提升和应用场景复杂化,Prompt Engineering的局限性(如提示敏感、泛化能力不足等)日益凸显。Context Engineering通过系统化的上下文管理、外部知识检索和多模态融合,构建更稳健的LLM应用。文档分析了Prompt与Context的区别,探讨了动态上下文拼接、RAG等核心技术,并展望了自动Prompt与Contex原创 2025-09-08 23:03:55 · 948 阅读 · 0 评论 -
Function CAll和MCP
Function Call技术使大语言模型(LLM)能够与外部工具交互,扩展其能力。通过解析用户意图,模型生成函数调用信息,外部软件执行具体操作后返回结果。例如,图像处理函数(如显示、调整大小)可通过Function Call被LLM调用。工作流程包括意图理解、函数选择、参数生成、执行与结果整合。该技术简化了用户与底层功能的交互,提升了任务执行效率。示例展示了如何定义函数描述、传递意图并解析模型响应,最终实现图像处理自动化。Function Call是LLM与软件生态结合的关键机制。原创 2025-07-13 17:34:13 · 1058 阅读 · 0 评论
分享