java数据结构与算法刷题-----LeetCode669. 修剪二叉搜索树

文章介绍了如何在Java中使用递归和迭代的方式解决二叉搜索树的trimBST问题,即删除所有值小于low或大于high的节点,同时保持二叉搜索树的特性。两种方法的时间复杂度均为O(n),空间复杂度递归版本为O(n),迭代版本为O(1)。
摘要由CSDN通过智能技术生成
java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

文章目录

在这里插入图片描述

解题思路
  1. 二叉搜索树,当前结点左边都比它小,右边都比它大
  2. 所以我们前序遍历
  1. 如果当前结点node,比low小,说明它和左子树都小于low,抛弃,那么剩下右子树保留,使用同样的套路判断,因为右子树都比node大,无法确定是否抛弃
  2. 如果node比high大,抛弃右子树,左子树保留进行判断。

1. 递归

代码:时间复杂度O(n),空间复杂度O(n)

在这里插入图片描述

class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        if(root == null) return null;
        int val = root.val;
        //如果当前结点<low,说明它和它的左子树都小于low,都需要去掉
        //但是右子树都比当前结点大,不能直接去掉,需要继续递归单独也判断一下
        if(val < low) return trimBST(root.right,low,high);//如果val<low,抛弃左子树,递归右子树,并返回右子树递归结果
        else if(root.val > high) return trimBST(root.left,low,high);//如果val>high,抛弃右子树,递归左子树
        else {//如果当前结点在low和high之间,说明其需要保留,则继续递归判读子孙是否需要去除
            root.left = trimBST(root.left,low,high);
            root.right = trimBST(root.right,low,high);
            return root;
        }
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */

2. 迭代

代码:时间复杂度O(n),空间复杂度O(1)

在这里插入图片描述

class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        //找到第一个不需要抛弃的结点,作为根结点。
        while (root != null && (root.val < low || root.val > high)) {//如果root不为null,并且root是要抛弃的结点就向下遍历
            if (root.val < low) {
                root = root.right;
            } else {
                root = root.left;
            }
        }
        if (root == null) {//如果这个根结点为null,说明所以结点都需要抛弃,返回null即可
            return null;
        }
        //将比low小的抛弃
        for (TreeNode node = root; node.left != null; ) {//从root开始遍历
            if (node.left.val < low) {//如果左子树left比low小,
                node.left = node.left.right;//抛弃left和其左子树,保留右子树
            } else {//如果左子树left比low大,那么right肯定更大,所以只需要继续向左找,因为左边是更小的值,才有可能小于low
                node = node.left;
            }
        }
        //将比high大的抛弃
        for (TreeNode node = root; node.right != null; ) {
            if (node.right.val > high) {//比high大
                node.right = node.right.left;//抛弃其本身和其右子树,保留左子树
            } else {
                node = node.right;
            }
        }
        return root;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

殷丿grd_志鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值