新能源行业必会基础知识-----电力系统经济学原理-----主目录(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/142483682 |
---|
1.1 简介
在西方经济学中,电力市场属于微观经济学的范畴,感兴趣的可以专门学习“经济学原理——微观经济学分册——美 曼昆 著”,这里只会阐述供大家理解电力市场所需的基本概念。电力不是一种普通的商品,电力市场比其他产品的市场更为复杂。
1.2 市场机制的基本原理
从古至今,市场从最初几个人偶尔聚在一起进行商品交易的地方演变为如今的电子虚拟市场。虽然技术上产生了翻天覆地的变化,但是市场机制的基本逻辑却从来没有改变过:
市场就是买卖双方进行沟通和撮合交易的地方
。接下来我们会通过生产者和消费者模型来研究,需要具备什么样的条件消费者和生产者才有可能达成交易
1.2.1 消费者模型
个人需求 |
---|
- 上图总结了你对苹果的
需求是如何随着价格变化的
。当然以现实为例,我们买苹果的决定也会受到代售苹果的质量影响。所以我们这里假设苹果这个商品的所有非价格属性(类型、尺寸和质量)都相同。(注:电力这个商品就是质量相同
的商品,无论谁发的,对于用电的人来说,没有区别)- 当苹果价格高于某极限价时,你会放弃苹果选择其它水果
- 如果低于某极限价,但是价格仍然很高,你可能只会买一个苹果当点心
- 如果价格再低一点,你可能买两个,一个作为点心,一个中午留着吃
- 再低一点的话,我们可能会多买几个(例如6个),晚上吃苹果派
- 如果价格特别低,比你之前见过的价格都低,你从来没见过这么便宜的苹果,你可能会大量购买,并酿制苹果酒。
- 这样的曲线揭示了消费者愿意购买特点商品的数量和该商品的价格之间的关系。
消费者剩余 |
---|
- 假设进入市场时,每个苹果价格是0.40美元。我们买6个苹果,那么作为消费者我们的总消费者剩余是多少呢(购买的这些苹果的总价值,你认同的苹果总价值)。
- 基于上一个模块中介绍的个人需求的曲线,我们以0.4买6个苹果,对我们来说,1、0.8、0.6美元的价格,代表我们对于苹果的价值或支付意愿高于统一市场价的体现
- 因为,按照之前的例子,1美元的时候我们会买一个苹果,0.8美元的时候我们会买2个,0.6的时候我们会买6个。
- 现在我们以0.4美元的价格买6个,那么我们需要支付6*0.4=2.40美元。而总消费者剩余就是这条曲线下的面积,也就是1×1+0.8×1+0.6×4=4.2美元(拆成3个矩形进行底乘高算面积然后加起来)
- 为了购买苹果我们花费2.4美元,因为这些钱无法挪作他用了,所以定义了净消费者剩余。定义为总消费者剩余与购买商品费用之间的差额。也就是下图中净消费者剩余等于市场价格水平线、需求曲线和价格坐标轴三者之间的面积。也就是4.2美元-6×0.4=1.8美元(总消费者剩余-下面空白部分面积)
- 净消费者剩余代表了购买所有苹果所获得的“额外价值”。
- 即使其中一些苹果的价值或支付意愿高于统一的市场价,你仍然可以按市场价格购买这些苹果
需求和反需求函数 |
---|
下图的曲线根据不同的自变量与因变量选择,该曲线可以被称为反需求函数或需求函数
- 同样数量的苹果,一些消费者愿意支付更高的购买价格,另一些消费者只会在苹果降价便宜的时候购买。足够多的消费者需求汇总起来后,单个消费者购买决策的阶梯型需求曲线就会变成一条光滑的曲线
- 可以看到,当价格降低时,需求的数量会变多。这条曲线就代表了这类消费者对这一商品的反需求函数
- q表示愿意购买的商品数量,π表示商品价格,公式为: π = D − 1 ( q ) π=D^{-1}(q) π=D−1(q)
- 如果从另一个选取自变量的角度看这条曲线,就可以得到这种商品的需求函数 q = D ( π ) q = D(π) q=D(π)。(也就是对反函数 π = D − 1 ( q ) π=D^{-1}(q) π=D−1(q)求了一下原函数)
{ π = D − 1 ( q ) = 由反函数定义得 q = D ( π ) {\begin{cases} π=D^{-1}(q)\xlongequal{由反函数定义得}q = D(π) \end{cases}} { π=D−1(q)由反函数定义得q=D(π)
- 大多数(不一定是全部)实际商品而言,需求函数是从左到右向下倾斜的(需求量随着价格的上升而下降)。而为什么要反需求函数呢?是因为它具有重要的经济意义。
- 某商品的反需求函数的函数值,反映了消费者在已经购买了一定数量的该商品的情况下,再多购买单位该商品所愿意支付的费用。
- 需求曲线上给出特定商品对于消费者的边际价值。比如消费者如果没有在多购买该商品上花费这笔钱,可以用这些钱购买其他的商品,或者把钱存起来以后购买另外的商品。
- 曲线向下倾斜的形状表明,当消费者购买的某商品的数量很少时,他们通常愿意购买更多,即消费者的边际支付意愿会随着购买该商品数量的增加而降低。
- 我们为单个消费者定义的总消费者剩余和净消费者剩余的概念可以扩展到一组消费者群体的总消费者剩余和净消费者剩余
- 和开头的例子一样,总消费者剩余用反需求函数和横轴围成的区域对应的面积表示,其中横轴的范围从坐标原点到当前市场价格下需求曲线对于的商品购买数量
- 同样的,净消费者剩余对应于反需求函数、市场价格水平线与纵轴之间围成的面积
- 净消费者剩余的理念比计算这一数量的确切数值重要的多。计算净消费者剩余的确切数值是相当困难的,因为反需求函数是无法准确给出的
- 更加有趣的是研究净消费者剩余是如何随着市场价格变化的
市场价格上涨时净消费者剩余的变化
- 如果市场价格为 π 1 π_{1} π1,消费者购买数量为 q 1 q_{1} q1,净消费者剩余等于阴影部分面积(A+B+C)
- 如果价格上升到 π 2 π_{2} π2,消费水平下降到 q 2 q_{2} q2,消费者的净剩余减少到标记为A的近似三角形区域的面积
- 净消费者剩余的减少主要有两个原因
- 由于价格较高,消费水平从 q 1 q_{1} q1下降到 q 2 q_{2} q2。单纯考虑减少消费带来的净消费者剩余的损失等于区域C的面积
- 对于消费数量为 q 2 q_{2} q2的商品,和之前相比,消费者必须支付更高的价格(从 π 1 π_{1} π1到 π 2 π_{2} π2),这损失了区域B的面积所代表的消费者剩余
需求价格弹性 |
---|
- 即使小幅度提高商品价格,商品的需求也会明显减少。减少的幅度是多少可以使用需求曲线的导数( d q d π \dfrac{dq}{dπ} dπdq)。但问题是,直接使用曲线的导数(求斜率),其数值却与我们所用的商品数量和价格的单位有关。会很难对不同商品进行需求弹性的横向比较
- 因此我们将需求的价格弹性定义为需求的相对变化(对q求导)与价格的相对变化(对π求导)两者之比
ε = d q q d π π = π q d q d π \varepsilon=\dfrac{\dfrac{dq}{q}}{\dfrac{dπ}{π}}=\dfrac{π}{q}\dfrac{dq}{dπ} ε=πdπqdq=qπdπdq- 对于一个给定的商品价格的百分比变化,若产生了一个较大的需求量的百分比变化,那么对这种商品的需求就是有弹性的。
相反,如果需求的相对变化小于价格的相对变化,则称这个商品的需求是没有弹性的
如果需求的价格弹性等于-1,那么这个商品的需求就是单位弹性的
- 某种商品的需求价格弹性在很大程度上取决于其替代品的供应。
例如,如果消费者不能把茶作为咖啡的替代品,那么,咖啡的需求价格弹性就会小得多。
- 用电需求的长期需求价格弹性可能远远高于短期需求价格弹性
例如电供暖在一个地区内普遍应用。短期内,电力需求的价格弹性将非常低,如果电价短时间上涨,消费者想要继续保暖,短期内他们会继续采取电取暖设备。但从长期来看,如果电价涨价持续的时间长,他们会考虑选择采用燃气供暖设备。
- 需求交叉弹性的概念为:某种商品与其替代品的关系可以通过定义商品i的需求变化与商品j的价格变化之间的相互关系来量化:
ε i j = d q i q i d π j π j = π j q i d q i d π j \varepsilon_{ij}=\dfrac{\dfrac{dq_{i}}{q_{i}}}{\dfrac{dπ_{j}}{π_{j}}}=\dfrac{π_{j}}{q_{i}}\dfrac{dq_{i}}{dπ_{j}} εij=πjdπjqidqi=qiπj<