算法 -【最小路径和】

题目

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。

示例1

最小路径和示例1

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例2

输入:grid = [[1,2,3],[4,5,6]]
输出:12

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

分析

本题是让找出一条从左上角到右下角的路径,使得路径上的数字总和最小。
这是一道典型的动态规划问题,我们定义 dp[i][j] 表示从左上角到位置 [i,j]的最小值,因为题中说了每次只能向下或向右移动,所以要想到位置 [i,j],可以从上面下来,也可以从左边过来,我们取他的最小值即可,递推公式如下图所示:
最小路径和动态规划
对于第一行的每个位置,没法从上面下来,只能从左边过来,同理第一列的每个位置只能从上面下来,所以第一行和第一列要单独处理。

代码

public int minPathSum(int[][] grid) {
    int m = grid.length, n = grid[0].length;
    for (int i = 1; i < m; i++)// 第一列只能从上面下来
        grid[i][0] += grid[i - 1][0];
    for (int i = 1; i < n; i++)// 第一行只能从左边过来
        grid[0][i] += grid[0][i - 1];
    for (int i = 1; i < m; i++)
        for (int j = 1; j < n; j++)// 递推公式
            grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j];
    return grid[m - 1][n - 1];
}

原文:https://mp.weixin.qq.com/s/fZ_wK7U3yw6QKvWJBHourw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值