Description
A先生有很多双筷子。确切的说应该是很多根,因为筷子的长度不一,很难判断出哪两根是一双的。这天,A先生家里来了K个客人,A先生留下他们吃晚饭。加上A先生,A夫人和他们的孩子小A,共K+3个人。每人需要用一双筷子。A先生只好清理了一下筷子,共N根,长度为T1,T2,T3,……,TN.现在他想用这些筷子组合成K+3双,使每双的筷子长度差的平方和最小。(怎么不是和最小??这要去问A先生了,呵呵)
Input
输入文件共有两行,第一行为两个用空格隔开的整数,表示N,K(1≤N≤100, 0<K<50),
第二行共有N个用空格隔开的整数,为Ti.每个整数为1~50之间的数。
Output
输出文件仅一行。如果凑不齐K+3双,输出-1,否则输出长度差平方和的最小值。
Sample Input
10 1
1 1 2 3 3 3 4 6 10 20
Sample Output
5
Hint
说明
第一双 1 1
第二双 2 3
第三双 3 3
第四双 4 6
(1-1)^2+(2-3)^2+(3-3)^2+(4-6)^2=5
【分析】
第一反应DP。然后开始想怎么定状态。根据经验,我们可以这样定义:F[i][j]表示前i只筷子中选了j双的代价。显然,我们先将筷子按长度从小到大排序。然后考虑F[i][j]应该由哪些状态转移而来。
显然,这里的决策只有两种:1.不选当前这只。2.选当前这只,并将它和前面的合成一双。
即F[i][j]由F[i-1][j]和F[i-2][j-1]转移而来。
得到DP方程:F[i][j]=min{F[i-1][j],F[i-2][j-1]+(v[i]-v[i-1])*(v[i]-v[i-1])};
【代码】
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<iostream>
#include<algorithm>
using namespace std;
int N,K,v[105],f[105][105];
void _qst_v(int l,int r)
{
int i=l,j=r,mv=v[(i+j)>>1];
while(i<=j)
{
while(v[i]<mv) i++;
while(v[j]>mv) j--;
if(i<=j)
{
swap(v[i],v[j]);
i++;j--;
}
}
if(l<j) _qst_v(l,j);
if(i<r) _qst_v(i,r);
}
void _init()
{
scanf("%d%d",&N,&K);
for(int i=1;i<=N;i++)
scanf("%d",&v[i]);
}
void _solve()
{
if(N<(K+3)*2)
{
printf("-1\n");
return;
}
for(int i=0;i<=N;i++)
for(int j=0;j<=K+3;j++)
f[i][j]=999999999;
_qst_v(1,N);
f[0][0]=0;
for(int i=1;i<=N;i++)
for(int j=1;j<=K+3;j++)
{
f[i][j]=f[i-1][j];
if(i>=2)
f[i][j]=min(f[i][j],f[i-2][j-1]+(v[i]-v[i-1])*(v[i]-v[i-1]));
}
printf("%d\n",f[N][K+3]);
}
int main()
{
_init();
_solve();
return 0;
}