- 博客(23)
- 收藏
- 关注
原创 [C++ Primer][1-2] 变量和基本类型
C++ Primer 中文版 (第5版)电子工业出版社C++ 11文章目录第一章 开始第二章 变量和基本类型第三章 字符串、向量和数组第一章 开始标准库iostream定义了4个IO对象:cin、cout、cerr(输出警告和错误)、clog(输出程序运行时的一般性信息,存入日志文件中);std::cerr << "Error!" << std::endl;std::cout << "Enter two numbers: " <.
2021-11-10 16:27:24 638
原创 x86-汇编-寄存器
3.4 基本的程序执行寄存器IA-32中提供了16个常见的寄存器:8个32位的通用寄存器:用于存储操作数和指针数据寄存器:EAX、EBX、ECX、EDXEAX-操作数和结果数据的累加器EBX-指向DS段中数据的指针,基址寄存器ECX-字符串和循环操作的计数器EDX-I/O指针ESI—指向DS寄存器指向的段中数据的指针;字符串操作的源指针EDI—指向ES寄存器指向的段中的数据(或目标)的指针;字符串操作的目标指针ESP-堆栈指针(在SS段中)EBP-指向堆栈上数据的指针(在SS段中
2021-11-09 16:03:34 709
原创 【论文 AAAI 2020】强化学习投资组合 + 自然语言处理
论文题目:Reinforcement-Learning Based Portfolio Management with Augmented Asset Movement Prediction States会议: The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-2020) (CCF A)目录abstractintroductionRelated WorkBackground and Problem Formulatio
2021-09-15 21:00:01 2347
原创 【论文 KDD 2018】Investor-Imitator: A Framework for Trading Knowledge Extraction
论文题目:Investor-Imitator: A Framework for Trading Knowledge Extraction论文链接:https://dl.acm.org/doi/10.1145/3219819.3220113会议: The 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, 2018,(CCF A)目录摘要1. 介绍摘要本文中,我们提出了基于强化学习的投资者-模仿
2021-07-27 18:12:54 236
原创 【论文 KDD 2019】AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using...
论文题目:AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks论文链接:https://dl.acm.org/doi/abs/10.1145/3292500.3330647会议: In The 25th ACM SIGKDD Conference on Knowledge Discovery Data Min
2021-07-21 00:02:01 1233 3
原创 【论文 CCF C】An Adaptive Box-Normalization Stock Index Trading Strategy Based on Reinforcement Learning
2021-07-13 22:55:37 189
原创 【论文 AAAI 2020】An Imitative Deep Reinforcement Learning Approach
论文题目:Adaptive Quantitative Trading: An Imitative Deep Reinforcement Learning Approach论文链接:https://ojs.aaai.org/index.php/AAAI/article/view/5587会议:Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(02): 2128-2135. (AAAI’2020)目录Abstr
2021-06-02 15:31:31 809
原创 算法导论 — 思考题15-5 编辑距离
题目:分析:a:字符串x的下标范围[0, 1, 2, ..., m],y的下标范围[0, 1, 2, ..., n];二维数组d[i, j]为距离矩阵,用于计算两点之间的编辑距离,我们的目标是求x和y的编辑距离,即d[m, n];二维数组option[i, j]用于存储每一步的操作;dict_cost为每种操作的代价,字典格式;分析不同操作的条件和代价:如果1 <= i <= m 且 1 <= j <= n:copy if x[i - 1] ==
2021-05-29 11:22:55 523
原创 DRQN论文解读
论文题目:Deep Recurrent Q-Learning for Partially Observable MDPs论文链接:https://arxiv.org/abs/1507.06527目录AbstractIntroductionDeep Q-LearningPartial ObservabilityDRQN ArchitectureStable Recurrent UpdatesAtari Games: MDP or POMDP?Flickering Atari GamesEvaluatio
2021-05-18 11:42:01 2745
原创 【论文 CCF C】An adaptive portfolio trading system
An adaptive portfolio trading system: A risk-return portfoliooptimization using recurrent reinforcement learning with expectedmaximum drawdown期刊:Expert Systems With Applications 87 (2017) 267–279论文链接:An adaptive portfolio trading system: A risk-return
2021-05-06 19:43:53 472 1
原创 【论文 CCF C】Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting
Expert Systems With Applications 164 (2021) 113820论文链接:Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting目录摘要1. Introduction2. Background and related work2.1. Reinforcement learning 略2.2. Reinforcement trading3. Proposed appro
2021-04-25 23:41:30 898
原创 【论文 CCF C】A Q-learning agent for automated trading in equity stock markets
Expert Systems with Applications 163 (2021) 113761论文链接A Q-learning agent for automated trading in equity stock markets目录摘要1. 介绍2. 方法2.1 马尔可夫过程 Markov Decision Process2.2 强化学习2.3 Q-learning2.4 Technical analysis of stocks3. Proposed system3.1 Proposed mo
2021-04-15 18:34:42 572
原创 ubuntu下用指定python版本的pip安装第三方包
指定python版本使用pip安装第三方包:sudo python3.6 -m pip install tensorflow==1.14.0
2020-12-03 18:08:59 1394
原创 python3.8 用国内镜像安装tensorflow
python3.8 用国内镜像安装tensorflowpip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade tensorflow
2020-10-05 19:51:31 2844 1
原创 Autoware结构概览
目录1.SensingCameraLiDARRADARIMUGPS/GNSS2.计算 Computing2.1 感知 Perception1)定位 Localization2)检测 Detection3)预测 Prediction2.2 决策 Decision1)Intelligence2)State2.3 计划 Planning1)Mission2)MotionActuation 执行模块1.SensingCameraLiDARRADARIMUGPS/GNSS2.计算 Computing
2020-09-17 19:03:41 1297 1
原创 机器学习[李宏毅]-笔记3-Basic Concept
目录1.误差来源:偏差(bias)和方差(variance)2.数理统计的相关内容3.不同模型对应的bias和variance4.如何处理underfitting和overfitting5.模型的选择5.1 交叉验证(Cross Validation)5.2 N折交叉验证(N-fold Cross Validation)1.误差来源:偏差(bias)和方差(variance)error有两个来源,一个来自bias(偏差),另一个来自variance(方差);f^\hat ff^为最佳的函数
2020-08-17 18:39:15 230
原创 机器学习[李宏毅]-笔记2-Regression:Case Study
应用场景股票预测:输入股市的历史数据,输出明天股市的预测值;无人驾驶:输入图片,输出方向盘的角度;产品推荐:输入使用者和商品,输出该使用者购买该商品的可能性;
2020-08-17 12:14:01 174
原创 机器学习[李宏毅]-笔记1-Course Introduction
视频链接:https://www.bilibili.com/video/BV1JE411g7XFRegression:函数输出为数值Classification:分类Supervised Learning:有监督学习,需要给机器做一些训练,需要有Labeled Data;Loss:损失函数,评价函数好坏,结果越小越好;机器需要找出Loss最低的函数;Reinforcement Learning:强化学习;Unsupervised Learning:无监督学习,给机器一堆数据,数据没有标注;
2020-08-09 02:11:38 155
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人