算法----汉诺塔的递归实现

 

已知有3个底座:A、B、C,在上放着n个盘子,越往上的盘子越小,要求将A上盘子移动至C上,移动过程和结果要遵守“小盘压大盘的原则”。

如果一个一个的盘子想,头一定会想大的!解决思路应该从整体考虑。即:将除每次要移动到C之外的所有盘子(n-1)看做一个整体,再分析出成功移动一个盘子的过程,最后利用递归算法解决。

递归解法(.NET实现):
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
namespace HelloWorld
{
    class GetString
    {
        static void Main(string[] args)
        {
            move(3, "A", "B", "C");
            Console.ReadLine();
        }
        private static void move(int num, String from2, String mid2, String to2)
        {
            if (num == 1)
            {
                Console.Write("move disk 1 from " + from2 + " to " + to2);
                Console.Write("/n");
            }
            else
            {
                move(num - 1, from2, to2, mid2);
                Console.Write("move disk " + num + " from " + from2 + " to " + to2);
                Console.Write("/n");
                move(num - 1, mid2, from2, to2);
            }
        }
    }
}

详解:
已知:A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
1.将A上的n-1(等于1)个圆盘移到B上;
2.再将A上的一个圆盘移到C上;
3.最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:
(1)将A上的n`-1(等于1)个圆盘移到C上。
(2)将A上的一个圆盘移到B。
(3)将C上的n`-1(等于1)个圆盘移到B。
B. 将A上的一个圆盘移到C。
C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:
(1)将B上的n`-1(等于1)个圆盘移到A。
(2)将B上的一个盘子移到C。
(3)将A上的n`-1(等于1)个圆盘移到C。
到此,完成了三个圆盘的移动过程。
从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤:
第一步 把A上的n-1个圆盘移到B上;
第二步 把A上的一个圆盘移到C上;
第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。
当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。 显然这是一个递归过程

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值