已知有3个底座:A、B、C,在上放着n个盘子,越往上的盘子越小,要求将A上盘子移动至C上,移动过程和结果要遵守“小盘压大盘的原则”。
如果一个一个的盘子想,头一定会想大的!解决思路应该从整体考虑。即:将除每次要移动到C之外的所有盘子(n-1)看做一个整体,再分析出成功移动一个盘子的过程,最后利用递归算法解决。
递归解法(.NET实现):
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
namespace HelloWorld
{
class GetString
{
static void Main(string[] args)
{
move(3, "A", "B", "C");
Console.ReadLine();
}
private static void move(int num, String from2, String mid2, String to2)
{
if (num == 1)
{
Console.Write("move disk 1 from " + from2 + " to " + to2);
Console.Write("/n");
}
else
{
move(num - 1, from2, to2, mid2);
Console.Write("move disk " + num + " from " + from2 + " to " + to2);
Console.Write("/n");
move(num - 1, mid2, from2, to2);
}
}
}
}
详解:
已知:A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
1.将A上的n-1(等于1)个圆盘移到B上;
2.再将A上的一个圆盘移到C上;
3.最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:
(1)将A上的n`-1(等于1)个圆盘移到C上。
(2)将A上的一个圆盘移到B。
(3)将C上的n`-1(等于1)个圆盘移到B。
B. 将A上的一个圆盘移到C。
C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:
(1)将B上的n`-1(等于1)个圆盘移到A。
(2)将B上的一个盘子移到C。
(3)将A上的n`-1(等于1)个圆盘移到C。
到此,完成了三个圆盘的移动过程。
从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤:
第一步 把A上的n-1个圆盘移到B上;
第二步 把A上的一个圆盘移到C上;
第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。
当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。 显然这是一个递归过程
如果一个一个的盘子想,头一定会想大的!解决思路应该从整体考虑。即:将除每次要移动到C之外的所有盘子(n-1)看做一个整体,再分析出成功移动一个盘子的过程,最后利用递归算法解决。
递归解法(.NET实现):
using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;
namespace HelloWorld
{
class GetString
{
static void Main(string[] args)
{
move(3, "A", "B", "C");
Console.ReadLine();
}
private static void move(int num, String from2, String mid2, String to2)
{
if (num == 1)
{
Console.Write("move disk 1 from " + from2 + " to " + to2);
Console.Write("/n");
}
else
{
move(num - 1, from2, to2, mid2);
Console.Write("move disk " + num + " from " + from2 + " to " + to2);
Console.Write("/n");
move(num - 1, mid2, from2, to2);
}
}
}
}
详解:
已知:A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
1.将A上的n-1(等于1)个圆盘移到B上;
2.再将A上的一个圆盘移到C上;
3.最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:
(1)将A上的n`-1(等于1)个圆盘移到C上。
(2)将A上的一个圆盘移到B。
(3)将C上的n`-1(等于1)个圆盘移到B。
B. 将A上的一个圆盘移到C。
C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:
(1)将B上的n`-1(等于1)个圆盘移到A。
(2)将B上的一个盘子移到C。
(3)将A上的n`-1(等于1)个圆盘移到C。
到此,完成了三个圆盘的移动过程。
从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤:
第一步 把A上的n-1个圆盘移到B上;
第二步 把A上的一个圆盘移到C上;
第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。
当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。 显然这是一个递归过程