14、Puppet资源管理与数据分离:从覆盖参数到Hiera应用

Puppet资源管理与数据分离:从覆盖参数到Hiera应用

1. 覆盖资源参数

在资源管理中,导出和虚拟资源通常只需声明一次,之后可在不同上下文中收集。不过,有时资源的中央定义无法在所有节点上安全实现。例如用户资源,为确保网络中用户账户的一致性,通常需要管理分配给每个账户的用户ID。虽然LDAP或类似目录服务可解决此问题,但并非所有站点都适用。

即便大多数机器上的账户能使用指定ID,仍可能存在例外情况。一些旧机器可能已将某些ID用于其他用途,难以更改,若在这些机器上创建具有相同ID的用户,操作将会失败。允许重复ID虽能创建账户,但并非解决之道,因为重复ID通常不可取。

Puppet提供了一种便捷方式来处理此类例外。若要为用户 felix 分配非标准的UID 2066,可通过属性值规范实现资源:

User<| title == 'felix' |> {
    uid => '2066'
}

你可以传递适用于该资源类型的任何属性、参数或元参数。通过这种方式指定的值是最终值,不可再次覆盖。

此语言特性功能强大,覆盖操作不仅适用于虚拟和导出资源,还能在清单的任何位置覆盖任何资源,从而实现一些出色的构造和快捷方式。

以之前创建的Cacti模块为例,该模块声明了一个包资源以确保软件安装,并指定了 ensure => installed 。若模块用户希望Puppet保持包的更新,此设置并不合适。虽然为模块类添加参数可让用户选择包和其他资源的

【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析(Python代码实现)内容概要:本文围绕“并_离网风光互补制氢合成氨系统容量-调度优化分析”的主题,提供了基于Python代码实现的技术研究复现方法。通过构建风能、太阳能互补的可再生能源系统模型,结合电解水制氢合成氨工艺流程,对系统的容量配置运行调度进行联合优化分析。利用优化算法求解系统在不同运行模式下的最优容量配比和调度策略,兼顾经济性、能效性和稳定性,适用于并网离网两种场景。文中强调通过代码实践完成系统建模、约束设定、目标函数设计及求解过程,帮助读者掌握综合能源系统优化的核心方法。; 适合人群:具备一定Python编程基础和能源系统背景的研究生、科研人员及工程技术人员,尤其适合从事可再生能源、氢能、综合能源系统优化等相关领域的从业者;; 使用场景及目标:①用于教学科研中对风光制氢合成氨系统的建模优化训练;②支撑实际项目中对多能互补系统容量规划调度策略的设计验证;③帮助理解优化算法在能源系统中的应用逻辑实现路径;; 阅读建议:建议读者结合文中提供的Python代码进行逐模块调试运行,配合文档说明深入理解模型构建细节,重点关注目标函数设计、约束条件设置及求解器调用方式,同时可对比Matlab版本实现以拓宽工具应用视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值