环境:ubuntu1804,python3.6, Tensorflow1.14
# -*- coding: UTF-8 -*-
"""
用梯度下降的优化方法来快速解决线性回归问题
"""
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
try:
xrange = xrange # Python 2
except:
xrange = range # Python 3
# 构建数据
points_num = 100
vectors = []
# 用 Numpy 的正态随机分布函数生成 100 个点
# 这些点的(x, y)坐标值对应线性方程 y = 0.1 * x + 0.2
# 权重(Weight)为 0.1,偏差(Bias)为 0.2
for i in xrange(points_num):
x1 = np.random.normal(0.0, 0.66)
y1 = 0.1 * x1 + 0.2 + np.random.normal(0.0, 0.04)
vectors.append([x1, y1])
x_data = [v[0] for v in vectors] # 真实的点的 x 坐标
y_data = [v[1] for v in vectors] # 真实的点的 y 坐标
# 图像 1 :展示 100 个随机数据点
plt.plot(x_data, y_data, 'r*', label="Original data") # 红色星形的点
plt.title("Linear Regression using Gradient Descent")
plt.legend()
plt.show()
# 构建线性回归模型
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) # 初始化 Weight
b = tf.Variable(tf.zeros([1])) # 初始化 Bias
y = W * x_data + b # 模型计算出来的 y
# 定义 loss function(损失函数)或 cost function(代价函数)
# 对 Tensor 的所有维度计算 ((y - y_data) ^ 2) 之和 / N
loss = tf.reduce_mean(tf.square(y - y_data))
# 用梯度下降的优化器来最小化我们的 loss(损失)
optimizer = tf.train.GradientDescentOptimizer(0.5) # 设置学习率为 0.5
train = optimizer.minimize(loss)
# 创建会话
sess = tf.Session()
# 初始化数据流图中的所有变量
init = tf.global_variables_initializer()
sess.run(init)
# 训练 20 步
for step in xrange(20):
# 优化每一步
sess.run(train)
# 打印出每一步的损失,权重和偏差
print("第 {} 步的 损失={}, 权重={}, 偏差={}".format(step+1, sess.run(loss), sess.run(W), sess.run(b)))
# 图像 2 :绘制所有的点并且绘制出最佳拟合的直线
plt.plot(x_data, y_data, 'r*', label="Original data") # 红色星形的点
plt.title("Linear Regression using Gradient Descent") # 标题,表示 "梯度下降解决线性回归"
plt.plot(x_data, sess.run(W) * x_data + sess.run(b), label="Fitted line") # 拟合的线
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()
# 关闭会话
sess.close()
结果:
第 1 步的 损失=0.0015473694074898958, 权重=[0.10280468], 偏差=[0.20569581]
第 2 步的 损失=0.0014834688045084476, 权重=[0.0999466], 偏差=[0.19808304]
第 3 步的 损失=0.0014831722946837544, 权重=[0.09967189], 偏差=[0.19847807]
第 4 步的 损失=0.0014831203734502196, 权重=[0.09948975], 偏差=[0.19851604]
第 5 步的 损失=0.0014831072185188532, 权重=[0.09939994], 偏差=[0.19854121]
第 6 步的 损失=0.001483103958889842, 权重=[0.09935477], 偏差=[0.19855362]
第 7 步的 损失=0.0014831031439825892, 权重=[0.09933208], 偏差=[0.19855987]
第 8 步的 损失=0.0014831029111519456, 权重=[0.09932069], 偏差=[0.198563]
第 9 步的 损失=0.0014831027947366238, 权重=[0.09931497], 偏差=[0.19856457]
第 10 步的 损失=0.0014831029111519456, 权重=[0.09931209], 偏差=[0.19856536]
第 11 步的 损失=0.0014831027947366238, 权重=[0.09931064], 偏差=[0.19856577]
第 12 步的 损失=0.0014831029111519456, 权重=[0.09930992], 偏差=[0.19856596]
第 13 步的 损失=0.0014831027947366238, 权重=[0.09930956], 偏差=[0.19856606]
第 14 步的 损失=0.0014831027947366238, 权重=[0.09930937], 偏差=[0.19856611]
第 15 步的 损失=0.0014831029111519456, 权重=[0.09930928], 偏差=[0.19856614]
第 16 步的 损失=0.0014831025619059801, 权重=[0.09930924], 偏差=[0.19856615]
第 17 步的 损失=0.0014831027947366238, 权重=[0.09930921], 偏差=[0.19856615]
第 18 步的 损失=0.0014831029111519456, 权重=[0.0993092], 偏差=[0.19856615]
第 19 步的 损失=0.0014831030275672674, 权重=[0.09930919], 偏差=[0.19856617]
第 20 步的 损失=0.0014831027947366238, 权重=[0.09930918], 偏差=[0.19856617]
图像: