在 KubeSphere CubeStudio 中为 Jupyter Notebook 配置 PVC 的完整方法

目录

在 KubeSphere CubeStudio 中为 Jupyter Notebook 配置 PVC 的完整方法

前提条件

1. 创建并配置本地存储类

2. 通过 KubeSphere 创建 PVC

3. 在 CubeStudio 项目中挂载 PVC

4. 创建 Jupyter Notebook 并绑定 PVC

5. 在宿主机访问数据目录

总结


在 KubeSphere CubeStudio 中为 Jupyter Notebook 配置 PVC 的完整方法

——以本地存储类 local 为例

在使用 KubeSphere 的 CubeStudio 开发环境时,为 Jupyter Notebook 持久化存储配置 PVC(PersistentVolumeClaim)是一个常见需求。本文将介绍如何基于 KubeSphere 的本地存储类 local,为 Notebook 分配并挂载专属的持久卷。

前提条件

  • KubeSphere 已部署,并启用 CubeStudio

  • 集群节点具备本地磁盘路径(如 /data1/openebs/local

  • 已配置 openebs.io/local 存储插件


1. 创建并配置本地存储类

首先,定义一个名为 local 的 StorageClass,并指定磁盘挂载路径。示例如下:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: local
  annotations:
    cas.openebs.io/config: |
      - name: StorageType
        value: "hostpath"
      - name: BasePath
        value: "/data1/openebs/local"
    openebs.io/cas-type: local
    storageclass.beta.kubernetes.io/is-default-class: 'true'
    storageclass.kubesphere.io/supported-access-modes: '["ReadWriteOnce"]'
provisioner: openebs.io/local
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

重点:
BasePath 指定为宿主机的本地目录 /data1/openebs/local,该目录需要提前创建,并保证节点具有写权限。


2. 通过 KubeSphere 创建 PVC

在 KubeSphere 界面或通过 YAML 创建一个 PVC,例如命名为 train

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: train
  namespace: jupyter
  annotations:
    kubesphere.io/alias-name: train
    kubesphere.io/creator: admin
    kubesphere.io/description: 训练用空间
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 2Ti
  storageClassName: local
  volumeMode: Filesystem

创建完成后,PVC 会自动绑定到一个 PV,并且卷名如 pvc-cf6b18e3-b116-47a0-8ebe-880836469dac,对应的实际目录会在 /data1/openebs/local 下生成。


3. 在 CubeStudio 项目中挂载 PVC

进入 KubeSphere 控制台:

项目空间 -> 项目 -> 选择目标项目 -> 编辑

在“存储”部分,添加挂载:

  • PVC:选择 train

  • 挂载路径:/mnt/

保存配置。


4. 创建 Jupyter Notebook 并绑定 PVC

前往:

在线开发 -> 代码开发 -> Notebook -> 创建 Notebook

在创建页面:

  • 选择刚才配置过 PVC 的项目

  • 配置 Notebook 运行环境(如 Python 版本)

  • 确保存储挂载路径 /mnt/ 已显示

完成后创建,Notebook 将自动挂载 PVC。


5. 在宿主机访问数据目录

如需在宿主机上直接管理或上传代码,可进入 PVC 对应的物理目录:

cd /data1/openebs/local/pvc-cf6b18e3-b116-47a0-8ebe-880836469dac/admin

示例:通过 git 下载代码

git clone https://your.repo.url/project.git

这样,Notebook 中的 /mnt/ 路径下会同步显示 project 文件夹。


总结

以上流程完成了:

  1. 创建本地存储类,指定数据盘目录

  2. 创建 PVC 并绑定到 Jupyter 项目

  3. 在 CubeStudio 中配置挂载

  4. Notebook 自动挂载 PVC,实现数据持久化

  5. 宿主机直接管理代码,提高开发效率

该方案特别适用于 GPU 训练、数据科学及 AI 模型开发场景,既满足数据隔离,又方便数据迁移和备份。


如果需要,我可以顺带帮你绘制一个 CubeStudio-PVC-Jupyter 的结构示意图,要继续吗?

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通与作业场景中的常见载具 - Buoy(浮标):水域导航与安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参与者的目标检测 标注格式: YOLO格式标注,含目标边界框与类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度与光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员与小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具与静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框与目标实际尺寸高度吻合 场景适配性: 包含近岸与开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值