
mcp
文章平均质量分 85
gs80140
拥有丰富的大型系统架构设计及实现经验,曾参与12306后端内存并发计算架构设计及核心源码实现,在高并发、分布式系统优化领域具备深厚的技术积累。同时,参与美国强生大全球大数据平台建设,在数据治理、存储与计算框架设计方面有出色表现。近年来专注于人工智能应用开发,将技术创新与实际业务需求相结合,具备从算法研究到应用落地的全栈能力,致力于推动大数据和人工智能技术在行业场景中的深度融合和实践。
展开
-
MCP 智能体策略共享、经验迁移与持续演化系统设计
文章介绍了MCP智能体系统的设计,重点在于策略共享、经验迁移与持续演化。策略共享允许智能体将成功策略上传至策略池,供其他智能体模仿执行,从而加速整体系统的成长和优化。经验迁移通过计算任务相似度,使智能体能够跨任务借鉴有效策略。持续演化机制则确保智能体系统能够不断更新和优化策略,适应新任务。文章还详细描述了策略池的管理、模仿执行的过程、任务相似度计算器的实现以及策略反馈机制,构建了一个完整的智能体系统演化闭环。最终,该系统具备多智能体协作、推理规划、策略学习和自我演化等能力,为构建自治、协同、自学的AI自组织原创 2025-05-09 09:25:01 · 872 阅读 · 0 评论 -
在 KubeSphere CubeStudio 中为 Jupyter Notebook 配置 PVC 的完整方法
以上流程完成了:创建本地存储类,指定数据盘目录创建 PVC 并绑定到 Jupyter 项目在 CubeStudio 中配置挂载Notebook 自动挂载 PVC,实现数据持久化宿主机直接管理代码,提高开发效率该方案特别适用于 GPU 训练、数据科学及 AI 模型开发场景,既满足数据隔离,又方便数据迁移和备份。如果需要,我可以顺带帮你绘制一个的结构示意图,要继续吗?原创 2025-05-09 01:30:00 · 631 阅读 · 0 评论 -
MCP 智能体性能监控、弹性扩展与大规模调度系统设计
本篇,我们实现了:✅ 任务与Agent性能监控✅ 基于负载的弹性扩缩容✅ 任务优先级调度✅ 大规模 Agent 动态治理与调度你的 MCP 智能体系统,现在已从「工具执行」→ 发展为「弹性、自主、自治的AI智能体组织。原创 2025-05-08 11:13:21 · 621 阅读 · 0 评论 -
MCP 智能体任务自我优化、失败恢复与策略演化系统设计
本篇,我们实现了:✅ 任务执行监控与性能记录✅ 失败检测与自动恢复✅ 策略经验积累(成功率与效率)✅ 执行策略演化(Policy Evolution)✅ 智能体自主优化执行路径自主理解 → 自主协作 → 自主学习 → 自主治理 → 自主优化 的完整闭环!原创 2025-05-08 10:01:26 · 372 阅读 · 0 评论 -
MCP 智能体动态角色、技能学习与自治治理系统设计
本篇,我们实现了:✅ Agent动态角色扮演✅ MCP Server动态工具学习✅ 协调者自动选举✅ 初步自治治理机制自主理解 → 自主协作 → 自主学习 → 自主治理 → 自适应成长 的完全体能力!原创 2025-05-07 08:59:03 · 864 阅读 · 0 评论 -
MCP 智能体自主对话链与协商投票机制
✅ Agent可以自主提出方案✅ Agent之间进行自由对话与投票✅ 投票决定最终执行策略✅ 支持多Agent自治协作,形成群体智能!你的 MCP 智能体系统,正式迈入:从智能体 → 多Agent协作 → 群体智能 → 自治AI组织的高级阶段!原创 2025-05-07 08:48:34 · 908 阅读 · 0 评论 -
MCP 智能体多轮对话链、上下文记忆与生命周期管理
这一篇,我们让 MCP 智能体系统:✅ 多轮对话管理(Dialogue Chain)✅ 每个Agent独立记忆(Memory)✅ 动态生成 / 自动销毁 Agent(Lifecycle)✅ Agent间共享上下文,支持连续任务你的系统,已经具备:持续交互 → 记忆积累 → 灵活扩展 → 自主决策 的完整智能体特征!原创 2025-05-06 08:33:33 · 1259 阅读 · 0 评论 -
MCP 智能体动态推理链与依赖任务编排
动态推理链(DRC),指的是:根据当前任务和已知工具/智能体能力智能体自主规划一个多步、多分支的任务执行链并在执行过程中动态调整(支持失败重试、跳步、条件判断)简单理解:像人做计划一样,边干边调整。DTG =有向无环图(DAG),描述任务之间的依赖关系。任务依赖说明T1无起始任务T2T1T1 完成后才能执行T3T1同上T4T2、T3T2、T3 都完成后才能执行智能体用这个图自动调度任务!本篇实现了:✅ 智能体动态推理链构建✅ 多任务依赖图管理。原创 2025-05-06 08:26:48 · 739 阅读 · 0 评论 -
MCP智能体多Agent协作系统设计(Multi-Agent Cooperation)
文件相关任务if "列出" in task and "txt" in task:if "读取" in task:filename = task.split("读取")[-1].strip()# 总结相关任务通过本篇内容,我们完成了:✅ 多智能体体系构建✅ 各智能体分工明确✅ 总控智能体任务拆分与结果聚合✅ 支持并发处理、扩展更大规模任务这标志着 MCP 智能体正式从单体阶段,迈向了多Agent协同智能体系统(Multi-Agent System)!原创 2025-05-05 00:00:00 · 984 阅读 · 0 评论 -
MCP智能体链式推理与动态生成Agent系统设计(Chain-of-Agents + Agent Spawn)
链式推理,就是智能体在处理任务时,动态调用其他Agent进行子任务处理,形成推理链。用户提问↓Agent A处理主任务↓Agent A发现需要信息检索 → 调用 Agent B↓Agent B检索后返回信息↓Agent A继续推理 → 调用 Agent C↓Agent C生成最终答案这种结构,可以处理极其复杂、层次化的任务!在运行过程中,如果当前的智能体系统内没有合适的Agent,可以动态生成一个新Agent(临时子智能体)来完成子任务。例如:临时生成一个文档翻译专员。原创 2025-05-04 00:15:00 · 724 阅读 · 0 评论 -
MCP多智能体消息传递机制(Message Passing Between Agents)
每条消息包含:sender:发送者名称receiver:接收者名称content:消息内容(可以是指令、请求、反馈等)通过本篇内容,我们实现了:✅ Agent之间消息传递✅ 智能体主动生成子任务✅ 动态跨Agent协作完成复杂任务✅ 让智能体系统从静态工作流进化为动态交互网络这标志着 MCP智能体正式迈向动态、自组织、自进化的智能体集群!原创 2025-05-04 00:00:00 · 713 阅读 · 0 评论 -
MCP智能体动态链路组合与调度系统设计
通过本篇设计与实战,我们实现了:✅ 基于意图动态规划执行链✅ 多工具组合串行执行✅ 中间结果动态传递✅ 执行异常自动处理与容错✅ 让智能体系统具备灵活工作流编排能力这为构建企业级智能体系统打下了坚实基础!原创 2025-05-03 00:15:00 · 322 阅读 · 0 评论 -
MCP智能体意图识别与工具路由:让AI自主决策调用链路
意图识别分析用户自然语言输入,提取出用户真正想要做的事。工具路由根据识别出的意图,从 MCP 动态发现的工具中选出最合适的,并动态生成调用链路。用户输入识别意图匹配工具"列出当前所有 txt 文件"文件列表查询"帮我搜索关键词'合同'的知识点"知识库搜索"读取X文件并总结内容"文件内容摘要通过本篇的内容,我们让 MCP 智能体具备了:✅ 基础意图识别能力✅ 动态工具匹配与参数生成✅ 自主执行多步任务✅ 支持后续无感扩展更多工具再进一步,就可以做到:多轮对话理解上下文。原创 2025-05-03 00:00:00 · 706 阅读 · 0 评论