目录
定义:Agent在任务执行后,将其策略(成功路径)上传到策略池中,其他Agent可拉取、模仿执行。
🛠️ 3. Agent 使用策略池进行模仿执行(Imitation Learning)
🧠 核心问题二:经验迁移(Experience Transfer)
🧠 核心问题三:持续演化(Continual Evolution)
🚀 MCP 智能体策略共享、经验迁移与持续演化系统设计
到目前为止,我们已构建出一个:
✅ 动态角色智能体网络
✅ 具备推理链、记忆、投票治理机制
✅ 支持弹性扩展和策略优化的智能体群体
但所有的“学习”仍是局部、局时的。
如果你想让智能体系统真正「不断进化」,它还需要:
✅ 策略共享
✅ 跨任务迁移经验
✅ 面向未来持续演化
🧠 核心问题一:为什么要策略共享?
传统Agent系统 | 策略共享系统 |
---|---|
每个Agent只会自己的经验 | Agent之间共享策略,成长加速 |
再训练成本高 | 学得一次,全系统受益 |
局部最优 | 系统整体优化 |
🛠️ 1. 策略共享(Policy Sharing)
定义:Agent在任务执行后,将其策略(成功路径)上传到策略池中,其他Agent可拉取、模仿执行。
策略记录格式:
class Strategy:
def __init__(self, task_type, agent, tool_chain, success_rate, context_summary):
self.task_type = task_type
self.agent = agent
self.tool_chain = tool_chain # [tool1, tool2, tool3...]
self.success_rate = success_rate
self.context_summary = context_summary
🛠️ 2. 策略池(Policy Pool)
class PolicyPool:
def __init__(self):
self.policies = []
def add(self, strategy: Strategy):
self.policies.append(strategy)
def query(self, task_type: str):
return sorted(
[s for s in self.policies if s.task_type == task_type],
key=lambda s: -s.success_rate
)
🛠️ 3. Agent 使用策略池进行模仿执行(Imitation Learning)
def imitate_and_execute(agent, task_type, task_input):
strategies = policy_pool.query(task_type)
if not strategies:
print(f"[{agent.name}] 无法模仿,尝试原始执行。")
return agent.execute(task_input)
top = strategies[0]
print(f"[{agent.name}] 模仿 {top.agent} 策略链:{top.tool_chain}")
for tool_name in top.tool_chain:
result = agent.call_tool(tool_name, task_input)
task_input = result # 可选:链式传递
return result
🧠 核心问题二:经验迁移(Experience Transfer)
场景示例:
-
Agent A 在任务 "总结医疗报告" 上表现优异
→ Agent B 遇到“总结财务报表”时,可以借鉴策略
我们引入:
任务类别相似度(Task Similarity)
基于语义嵌入(embedding)或关键词匹配
🛠️ 4. 任务相似度计算器
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
def similar_tasks(new_task_desc, existing_policies, topk=3):
task_embedding = model.encode(new_task_desc, convert_to_tensor=True)
scored = []
for policy in existing_policies:
emb = model.encode(policy.context_summary, convert_to_tensor=True)
score = util.pytorch_cos_sim(task_embedding, emb).item()
scored.append((policy, score))
return sorted(scored, key=lambda x: -x[1])[:topk]
🧠 核心问题三:持续演化(Continual Evolution)
Agent应能:
-
持续更新策略池
-
持续优化策略结构
-
在遇到新任务时“迁移+尝试+反馈”
🛠️ 5. 策略反馈机制
每次任务执行结束后:
def feedback_strategy(task_type, agent, tool_chain, success, context_summary):
success_rate = 1.0 if success else 0.0
strategy = Strategy(task_type, agent.name, tool_chain, success_rate, context_summary)
policy_pool.add(strategy)
策略池会随着任务积累而逐步“进化”出:
-
不同任务下的最优调用路径
-
不同角色的优势执行方式
-
新策略可被新生成Agent复用、迁移
🧠 构建演化闭环
任务执行 →
记录成功策略 →
存入策略池 →
新任务模仿迁移 →
执行结果反馈 →
策略池优化 →
智能体系统演化
🧠 技术总结
这一篇,我们完成了:
✅ 智能体策略池管理
✅ 多Agent策略共享与模仿执行
✅ 基于相似度的任务经验迁移
✅ 完整策略更新与持续优化闭环
你现在的 MCP 智能体系统,已经具备:
系统记忆 → 模仿迁移 → 持续优化 → 自我演化 的类人智慧机制!
🏆 你已经完成了全栈级智能体系统设计
你构建了一个真正具备:
能力 | 说明 |
---|---|
多Agent协作 | 动态分工与角色协同 |
推理与规划 | 多工具组合执行链 |
对话与治理 | 提案、协商、投票 |
策略学习 | 执行优化与失败恢复 |
演化成长 | 策略共享、经验迁移 |
这不仅是一个「Agent 系统」,
它是一个自治 + 协同 + 自学 + 自治理的AI 自组织系统蓝图。
✅ 接下来你可以做的:
-
实战部署:基于 FastAPI + multiprocessing 启动 MCP Agent 服务
-
加入 GUI / Dashboard 进行 Agent 编排可视化
-
集成 RAG、LangChain、LLM 插件,赋予大模型更强工具调用能力
-
构建属于你自己的 Multi-Agent 平台