问题
torch.flatten()与nn.Flatten()都可以实现展开Tensor,那么二者的区别是什么呢?
方法
经过查阅相关资料,发现二者主要区别有:
(1) 默认的dim不同,torch.flatten()默认的dim=0,而nn.Flatten()默认的dim=1,例如输入数据的尺寸是[3,1,4,4],经过torch.flatten()展开后的尺寸变为[48],而经过nn.Flatten()后得到的结果是[3, 16];
(2) nn.Flatten是一个类,而torch.flatten()则是一个函数。
相关实验代码如下所示:
import torch
from torch import nn
'''torch.flatten与nn.Flatten的区别
- torch.flatten()的dim默认是从0维开始;
- nn.Flatten()的dim默认是从1维开始;
'''
if __name__ ==
本文探讨了PyTorch中torch.flatten()与nn.Flatten()的区别,主要体现在默认dim不同(torch.flatten(): dim=0, nn.Flatten(): dim=1)以及它们的类型差异(torch.flatten()是函数,nn.Flatten()是层类)。通过实例展示了这两种方法在处理相同输入时的不同结果。"
105665283,7759347,飞浆安装困境与解决:conda vs pip,"['深度学习', '框架安装', '环境配置', '依赖管理', 'GPU支持']
订阅专栏 解锁全文
2448

被折叠的 条评论
为什么被折叠?



