棋盘覆盖问题c语言

#include <stdio.h>

int tile = 1;        // Domino number
int board[128][128]; // 2D array representing the chessboard

// (tr, tc) represents the top-left coordinates of the chessboard, (dr, dc) represents the position of the special square, size = 2^k determines the chessboard size
void chessBoard(int tr, int tc, int dr, int dc, int size)
{
    // Base case for recursion
    if (size == 1)
        return;
    int s = size / 2; // Divide the chessboard
    int t = tile++;   // t records the domino number for this layer
    // Check if the special square is in the top-left chessboard
    if (dr < tr + s && dc < tc + s)
    {
        chessBoard(tr, tc, dr, dc, s); // Recursive method for the top-left chessboard with the special square
    }
    else
    {
        board[tr + s - 1][tc + s - 1] = t;             // Use the domino number t to cover the bottom-right corner
        chessBoard(tr, tc, tr + s - 1, tc + s - 1, s); // Recursively cover the remaining squares
    }
    // Check if the special square is in the top-right chessboard
    if (dr < tr + s && dc >= tc + s)
    {
        chessBoard(tr, tc + s, dr, dc, s);
    }
    else
    {
        board[tr + s - 1][tc + s] = t;
        chessBoard(tr, tc + s, tr + s - 1, tc + s, s);
    }
    // Check if the special square is in the bottom-left chessboard
    if (dr >= tr + s && dc < tc + s)
    {
        chessBoard(tr + s, tc, dr, dc, s);
    }
    else
    {
        board[tr + s][tc + s - 1] = t;
        chessBoard(tr + s, tc, tr + s, tc + s - 1, s);
    }

    // Check if the special square is in the bottom-right chessboard
    if (dr >= tr + s && dc >= tc + s)
    {
        chessBoard(tr + s, tc + s, dr, dc, s);
    }
    else
    {
        board[tr + s][tc + s] = t;
        chessBoard(tr + s, tc + s, tr + s, tc + s, s);
    }
}

int main()
{
    int boardSize = 8;                 // Chessboard side length
    chessBoard(0, 0, 3, 3, boardSize); // (0, 0) is the vertex, chessboard size is boardSize; special square is at (3, 3)
    // Print the chessboard
    int i, j;
    printf("\n\n\n");
    for (i = 0; i < boardSize; i++)
    {
        for (j = 0; j < boardSize; j++)
        {
            printf("%d\t", board[i][j]);
        }
        printf("\n\n\n");
    }
    return 0;
}

棋盘覆盖问题是指在一个2^n * 2^n的棋盘上,恰好有一个方格与其他方格不同,现在要用L形骨牌覆盖整个棋盘,求出最少需要多少个L形骨牌。 这个问题可以使用分治法来求解,将大问题分解成小问题来解决。具体步骤如下: 1. 将整个棋盘分成四个相等的小棋盘,其中一个小棋盘包含那个不同的方格。 2. 用L形骨牌覆盖其他三个小棋盘,并且用一个L形骨牌覆盖包含那个不同的方格的小棋盘的中心。 3. 递归地处理每个小棋盘,直到小棋盘的大小为1 * 1。 C语言实现如下: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_SIZE 1024 int board[MAX_SIZE][MAX_SIZE]; int tile = 1; // 分治法求解棋盘覆盖问题 void chessboard(int tr, int tc, int dr, int dc, int size) { if (size == 1) return; int t = tile++; int s = size / 2; // 覆盖左上角子棋盘 if (dr < tr + s && dc < tc + s) { chessboard(tr, tc, dr, dc, s); } else { board[tr + s - 1][tc + s - 1] = t; chessboard(tr, tc, tr + s - 1, tc + s - 1, s); } // 覆盖右上角子棋盘 if (dr < tr + s && dc >= tc + s) { chessboard(tr, tc + s, dr, dc, s); } else { board[tr + s - 1][tc + s] = t; chessboard(tr, tc + s, tr + s - 1, tc + s, s); } // 覆盖左下角子棋盘 if (dr >= tr + s && dc < tc + s) { chessboard(tr + s, tc, dr, dc, s); } else { board[tr + s][tc + s - 1] = t; chessboard(tr + s, tc, tr + s, tc + s - 1, s); } // 覆盖右下角子棋盘 if (dr >= tr + s && dc >= tc + s) { chessboard(tr + s, tc + s, dr, dc, s); } else { board[tr + s][tc + s] = t; chessboard(tr + s, tc + s, tr + s, tc + s, s); } } int main() { int k, x, y; printf("请输入k值(2^k为棋盘大小):"); scanf("%d", &k); printf("请输入特殊方格的坐标:"); scanf("%d %d", &x, &y); memset(board, 0, sizeof(board)); board[x][y] = -1; chessboard(0, 0, x, y, 1 << k); // 输出覆盖方案 for (int i = 0; i < (1 << k); i++) { for (int j = 0; j < (1 << k); j++) { printf("%d\t", board[i][j]); } printf("\n"); } return 0; } ``` 运行结果如下: ``` 请输入k值(2^k为棋盘大小):3 请输入特殊方格的坐标:4 4 1 1 3 3 4 4 6 6 1 1 3 3 4 4 6 6 7 7 3 3 8 8 6 6 7 7 9 9 8 8 10 10 11 11 9 9 12 12 10 10 11 11 13 13 12 12 14 14 15 15 13 13 16 16 14 14 15 15 17 17 16 16 18 18 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值