深度学习模型太多了,tensorflow、theano、keras、mxnet等等,听说mxnet开发者们在斗鱼直播教学,所以趁机学习一波。
第一节课 从零开始之线性回归
先从零开始,搭一个线性回归
# coding=utf-8
from mxnet import gluon
from mxnet import ndarray as nd
from mxnet import autograd
import matplotlib.pyplot as plt
import random
def data_iter(X, y, num_examples, batch_size):
# 产生索引
idx = list(range(num_examples))
random.shuffle(idx)
for i in range(0, num_examples, batch_size):
j = nd.array(idx[i:min(i + batch_size, num_examples)])
yield nd.take(X, j), nd.take(y, j)
def net(X, w, b):
return nd.dot(X, w) + b
def square_loss(yhat, y):
return (yhat - y.reshape(yhat.shape)) ** 2
def SGD(params, lr):
for param in params:
param[:] = param - lr * param.grad
def main():
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
X = nd.random_normal(shape=(num_examples, num_inputs))
y = true_w[0] * X[:, 0] + true_w[1] * X[:, 1] + true_b
y += 0.01 * nd.random_normal(shape=y.shape)
batch_size = 10
# # 画图
# plt.scatter(X[:, 1].asnumpy(), y.asnumpy())
# plt.show()
# for data, label in data_iter(X, y, num_examples, batch_size):
# print(data, label)
# break
w = nd.random_normal(shape=(num_inputs, 1))
b = nd.zeros((1,))
params = [w, b]
for param in params:
param.attach_grad()
epochs = 5
learning_rate = 0.01
for e in range(epochs):
total_loss = 0
for data, label in data_iter(X, y, num_examples, batch_size):
with autograd.record():
output = net(data, w, b)
loss = square_loss(output, label)
loss.backward()
SGD(params, learning_rate)
total_loss += nd.sum(loss).asscalar()
print("Epoch %d,average loss is %f" % (e, total_loss / num_examples))
print(true_w, w)
print(true_b, b)
pass
if __name__ == '__main__':
main()
使用gluon搭建线性回归
# coding=utf-8
from mxnet import ndarray as nd
from mxnet import gluon
from mxnet import autograd
from mxnet.gluon.nn import Dense
def main():
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
X = nd.random_normal(shape=(num_examples, num_inputs))
y = true_w[0] * X[:, 0] + true_w[1] * X[:, 1] + true_b
y += 0.01 * nd.random_normal(shape=y.shape)
# print("x is ", X[:3])
# print("y is ", y[:3])
batch_size = 10
dataset = gluon.data.ArrayDataset(X, y)
data_iter = gluon.data.DataLoader(dataset, batch_size, shuffle=True)
# for data, label in data_iter:
# print(data, label)
# break
net = gluon.nn.Sequential()
net.add(Dense(1))
net.initialize()
square_loss = gluon.loss.L2Loss()
trainer = gluon.Trainer(net.collect_params(), "sgd", {
"learning_rate": 0.1})
epochs = 5
for e in range(epochs):
total_loss = 0
for data, label in data_iter:
with autograd.record():
output = net(data)
loss = square_loss(output, label)
loss.backward()
trainer.step(batch_size)
total_loss += nd.sum(loss).asscalar()
print("Epoch %d,average loss is %f" % (e, total_loss / num_examples))
dense = net[0]
print(true_w, dense.weight.data())
print(true_b, dense.bias.data())
if __name__ == '__main__':
main()