真正感受到找不对教程,可以练手,但跳进去的坑实在是太多了,废话不多说,直接参考教程
参考教程:(1)http://blog.rickdyang.me/2017-03//install-tensorflow/ 点击打开链接
(2)http://blog.csdn.net/wopawn/article/details/52302164点击打开链接
仅供学习参考!
Ubuntu 16.04 & GTX 1050/GTX1060上安装TensorFlow with GPU,深度学习开发环境
1. 安装NVIDIA Driver
如果已经安装了,可以跳过这步。
1.1. 官方版本
从NVDIA官方网站下载,Ctrl+Alt+F1进入终端模式
先卸载旧驱动
sudo apt-get remove --purge nvidia*
安装下载的新驱动
注意要有后面的参数——“-no-x-check –no-nouveau-check –no-opengl-files”
否则Ubuntu可能会一直卡在login界面,我就被这个坑了好久。
sudo chmod a+x NVIDIA-Linux-x86_64-378.13.run
sudo ./NVIDIA-Linux-x86_64-375.26.run --no-x-check --no-nouveau-check --no-opengl-files
sudo reboot
可能遇到的问题:安装失败:
ERROR: Unable to load the kernel module 'nvidia.ko'. This happens most frequently when this kernel module was built against the wrong or improperly configured kernel sources, with a version of gcc that differs from the one used to build the target kernel, or if a driver such as rivafb, nvidiafb, or nouveau is present and prevents the NVIDIA kernel module from obtaining ownership of the NVIDIA graphics device(s), or no NVIDIA GPU installed in this system is supported by this NVIDIA Linux graphics driver release.
--------------------------------------------------------------------------------------------------------------------------------------------
解决方法:改变系统源(推荐),缺点:速度较慢
更新Ubuntu16.04源,终端输入
cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vi sources.list
把下面的这些源添加到source.list中:
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse
最后更新源和更新已安装的包:
终端输入
sudo apt-get update
sudo apt-get upgrade
---------------------------------------------------------------------------------------------------------------------------------------------
1.2. 源安装
如果官方驱动安装有问题,可以尝试下面的源安装
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get -qy update
sudo apt-get -qy install nvidia-378
sudo apt-get -qy install mesa-common-dev
sudo apt-get -qy install freeglut3-dev
sudo reboot
nvidia-smi至此,已经安装完毕,bash中使用命令查看:
我安装是nvidia-378,可以从下面的列表里面选个最新的安装
apt list nvidia-*
2. 安装NVIDIA CUDA 8.0
参考步骤NVIDIA CUDA Installation Document
2.1. 验证CUDA Capable GPU
NVIDIA 查询CUDA GPU网站【http://www.geforce.cn/drivers】,用下面命令查看显卡类型
lspci | grep -i nvidia
如果不能正确显示显卡型号,需要更新一下PCI ids
sudo update-pciids
然后再查一下显卡类型
2.2. 其他验证
按NVIDIA CUDA Installation Document【http://docs.nvidia.com/cuda/cuda-installation-guide-linux/】步骤,一步一步来。
2.3. 下载CUDA 8.0
从CUDA 8.0【https://developer.nvidia.com/cuda-downloads】选择对应版本下载,我选择的是runfile(local)版本。但是下载实在是太慢了,而且莫名其妙会失败。浏览器直接下载不行,NAS也不行,QQ旋风更不行,最后换成迅雷,飞快地下完了,赞!不放心的话,可以用CUDA Installer Chechsum验证。
2.4. 安装CUDA
sudo sh cuda_8.0.61_375.26_linux.run
3. 安装NVIDIA cuDNN6.0(https://developer.nvidia.com/rdp/cudnn-download)安装的时候会让你再次安装驱动,之前已经安装好了,千万要选No
CUDA Samples的目录我放在了/usr/local/cuda-8.0/下
细节可以参考
深度学习开发环境配置:Ubuntu1 6.04+Nvidia GTX 1080+CUDA 8.0【
点击打开链接】
安装cuDNN5.1需要注册NVIDIA会员,简单填一下基本信息即可。
去Nvidia官网下载cuDNN安装包,选择这个:Download cuDNN v6.0 for CUDA 8.0 & cuDNN v6.1 Library for Linux
第一种方法:(手动安装)
解压安装包以后会出现cuda的目录,进入该目录
cd cuda/include/
sudo cp cudnn.h /usr/local/cuda/include/
cd ../lib64
sudo cp lib* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.5
sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5
sudo ln -s libcudnn.so.5 libcudnn.so
接下来执行以下命令:
在终端中输入以下命令进行环境变量的配置:
sudo gedit /etc/profile
在末尾加上:
PATH=/usr/local/cuda/bin:$PATH
export PATH
创建链接文件
sudo gedit /etc/ld.so.conf.d/cuda.conf
在该文件末尾加入
/usr/local/cuda/lib64
然后使用ldconfig使之生效
sudo ldconfig
第二种方法:
直接下载安装***.deb文件,然后直接
sudo dpkg -i libcudnn6_6.0.21-1+cuda8.0_amd64.deb
下载如图(需要简单注册登录一下)
4. 验证CUDA & cuDNN
进入CUDA 8.0 Samples默认安装路径
sudo make all -j4
cd bin/x86_64/linux/release
./deviceQuery
cuDNN安装和验证是参考的是
Ubuntu16.04+GTX 1050+cuda8.0+cuDNN5.1+caffe安装详解
5. 安装TensorFlow With GPU
我直接参考的TensorFlow官方Linux安装教程【https://www.tensorflow.org/install/】
$ pip install tensorflow # Python 2.7; CPU support (no GPU support)
$ pip3 install tensorflow # Python 3.n; CPU support (no GPU support)
$ pip install tensorflow-gpu # Python 2.7; GPU support
$ pip3 install tensorflow-gpu # Python 3.n; GPU support
至此,深度学习开发环境算是搭建完成了。
其他参考地址:
http://lib.csdn.net/article/aiframework/55144
https://zhuanlan.zhihu.com/p/22635699