Ubuntu 16.04 & GTX 1050+cuda8.0 +cuDNN5.1 的深度学习开发环境搭建/ERROR: Unable to load the kernel module 'nvidi

真正感受到找不对教程,可以练手,但跳进去的坑实在是太多了,废话不多说,直接参考教程

参考教程:(1)http://blog.rickdyang.me/2017-03//install-tensorflow/  点击打开链接  

                  (2)http://blog.csdn.net/wopawn/article/details/52302164点击打开链接   

仅供学习参考!


Ubuntu 16.04 & GTX 1050/GTX1060上安装TensorFlow with GPU,深度学习开发环境

1. 安装NVIDIA Driver

如果已经安装了,可以跳过这步。

1.1. 官方版本

NVDIA官方网站下载,Ctrl+Alt+F1进入终端模式
先卸载旧驱动

sudo apt-get remove --purge nvidia*

安装下载的新驱动
注意要有后面的参数——“-no-x-check –no-nouveau-check –no-opengl-files”
否则Ubuntu可能会一直卡在login界面,我就被这个坑了好久。

sudo chmod a+x NVIDIA-Linux-x86_64-378.13.run
sudo ./NVIDIA-Linux-x86_64-375.26.run --no-x-check --no-nouveau-check --no-opengl-files
sudo reboot

可能遇到的问题:安装失败:

ERROR: Unable to load the kernel module 'nvidia.ko'. This happens most frequently when this kernel module was built against the wrong or improperly configured kernel sources, with a version of gcc that differs from the one used to build the target kernel, or if a driver such as rivafb, nvidiafb, or nouveau is present and prevents the NVIDIA kernel module from obtaining ownership of the NVIDIA graphics device(s), or no NVIDIA GPU installed in this system is supported by this NVIDIA Linux graphics driver release.
--------------------------------------------------------------------------------------------------------------------------------------------

解决方法:改变系统源(推荐),缺点:速度较慢
更新Ubuntu16.04源,终端输入 
cd /etc/apt/  
sudo cp sources.list sources.list.bak  
sudo vi sources.list  
把下面的这些源添加到source.list中: 
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse  
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse  
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse  
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse  
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse  
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse  
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse  
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse  
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse  
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse  
最后更新源和更新已安装的包: 
终端输入 
sudo apt-get update  
sudo apt-get upgrade  
---------------------------------------------------------------------------------------------------------------------------------------------

1.2. 源安装

如果官方驱动安装有问题,可以尝试下面的源安装

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get -qy update
sudo apt-get -qy install nvidia-378
sudo apt-get -qy install mesa-common-dev
sudo apt-get -qy install freeglut3-dev
sudo reboot

nvidia-smi至此,已经安装完毕,bash中使用命令查看:


我安装是nvidia-378,可以从下面的列表里面选个最新的安装

apt list nvidia-*

2. 安装NVIDIA CUDA 8.0

参考步骤NVIDIA CUDA Installation Document

2.1. 验证CUDA Capable GPU

NVIDIA 查询CUDA GPU网站【http://www.geforce.cn/drivers】,用下面命令查看显卡类型

lspci | grep -i nvidia

如果不能正确显示显卡型号,需要更新一下PCI ids

sudo update-pciids

然后再查一下显卡类型

2.2. 其他验证

NVIDIA CUDA Installation Document【http://docs.nvidia.com/cuda/cuda-installation-guide-linux/】步骤,一步一步来。

2.3. 下载CUDA 8.0

CUDA 8.0【https://developer.nvidia.com/cuda-downloads】选择对应版本下载,我选择的是runfile(local)版本。但是下载实在是太慢了,而且莫名其妙会失败。浏览器直接下载不行,NAS也不行,QQ旋风更不行,最后换成迅雷,飞快地下完了,赞!不放心的话,可以用CUDA Installer Chechsum验证。

2.4. 安装CUDA

sudo sh cuda_8.0.61_375.26_linux.run

3. 安装NVIDIA cuDNN6.0(https://developer.nvidia.com/rdp/cudnn-download)安装的时候会让你再次安装驱动,之前已经安装好了,千万要选No
CUDA Samples的目录我放在了/usr/local/cuda-8.0/下
细节可以参考 深度学习开发环境配置:Ubuntu1 6.04+Nvidia GTX 1080+CUDA 8.0点击打开链接

安装cuDNN5.1需要注册NVIDIA会员,简单填一下基本信息即可。
Nvidia官网下载cuDNN安装包,选择这个:Download cuDNN v6.0 for CUDA 8.0 & cuDNN v6.1 Library for Linux

第一种方法:(手动安装)

   解压安装包以后会出现cuda的目录,进入该目录

cd cuda/include/   
sudo cp cudnn.h /usr/local/cuda/include/   
cd ../lib64   
sudo cp lib* /usr/local/cuda/lib64/   
sudo chmod a+r /usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

cd /usr/local/cuda/lib64/   
sudo rm -rf libcudnn.so libcudnn.so.5   
sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5   
sudo ln -s libcudnn.so.5 libcudnn.so

接下来执行以下命令:

在终端中输入以下命令进行环境变量的配置:

sudo gedit /etc/profile

在末尾加上:

PATH=/usr/local/cuda/bin:$PATH   
export PATH

创建链接文件

sudo gedit /etc/ld.so.conf.d/cuda.conf

在该文件末尾加入

/usr/local/cuda/lib64

然后使用ldconfig使之生效

sudo ldconfig

第二种方法:
直接下载安装***.deb文件,然后直接

sudo dpkg -i libcudnn6_6.0.21-1+cuda8.0_amd64.deb
下载如图(需要简单注册登录一下)


4. 验证CUDA & cuDNN

进入CUDA 8.0 Samples默认安装路径

sudo make all -j4  
cd bin/x86_64/linux/release   
./deviceQuery

cuDNN安装和验证是参考的是 Ubuntu16.04+GTX 1050+cuda8.0+cuDNN5.1+caffe安装详解

5. 安装TensorFlow With GPU

我直接参考的TensorFlow官方Linux安装教程https://www.tensorflow.org/install/

 $ pip install tensorflow      # Python 2.7; CPU support (no GPU support)
 $ pip3 install tensorflow     # Python 3.n; CPU support (no GPU support)
 $ pip install tensorflow-gpu  # Python 2.7;  GPU support
 $ pip3 install tensorflow-gpu # Python 3.n; GPU support 

至此,深度学习开发环境算是搭建完成了。

其他参考地址:

http://lib.csdn.net/article/aiframework/55144

https://zhuanlan.zhihu.com/p/22635699


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值