机器学习
文章平均质量分 76
@RichardWang
CS PhD Student, 研究深度强化学习技术&优化理论&应用落地
展开
-
TensorFlow如何充分使用所有CPU核数,提高TensorFlow的CPU使用率,以及Intel的MKL加速
转载链接:http://nooverfit.com/wp/tensorflow%E5%A6%82%E4%BD%95%E5%85%85%E5%88%86%E4%BD%BF%E7%94%A8%E6%89%80%E6%9C%89cpu%E6%A0%B8%E6%95%B0%EF%BC%8C%E6%8F%90%E9%AB%98tensorflow%E7%9A%84cpu%E4%BD%BF%E7%94%A8%转载 2017-09-07 16:34:58 · 27189 阅读 · 8 评论 -
深度学习之正则化系列(1):深入理解参数范数惩罚(L1正则化、L2正则化)原理及tensorflow实现
1、背景简介说起正则化,那为什么我们训练的模型或者是神经网络需要正则化呢?它的主要作用在于: 提高泛化能力,防止过拟合举个例子:上学期间广义分为三种人(仅仅说学习成绩): 学渣:根本就没学懂,书中的题目不会,考试卷也不会(欠拟合) 书呆子:就会课本上的,所有题目都会做,但是考试就是成绩低(过拟合) 学霸: 书中的会,考试照样考100,是不是可怕?懂了吧,机器学习和人一...原创 2018-05-23 11:31:45 · 15524 阅读 · 1 评论 -
SVM原理及在分类和回归预测中的python代码实现
注: 本blog是个人学习笔记记录,如有错误,欢迎指出,以供学习进步!,再次非常感谢!说起SVM,应该是机器学习中非常典型的算法,但理解也是比较难的,因此直接看博主july的《支持向量机通俗导论(理解SVM的三层境界)》https://www.cnblogs.com/v-July-v/archive/2012/06/01/2539022.html, 讲的非常全面和细致,看完之后基本上就理解...原创 2018-05-21 21:49:57 · 17779 阅读 · 1 评论 -
通俗直白讲解卷积神经网络(CNN),以及利用tensorflow+CNN实现手写数字(MNIST)分类的代码实现
注:假设已经懂了简单神经网络1. 卷积神经网络卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利...原创 2018-05-20 16:57:59 · 4139 阅读 · 0 评论 -
批量读取数据next_batch()的简单函数实现
读取方法过程Method()# 随机取batch_size个训练样本 import numpy as npdef next_batch(train_data, train_target, batch_size): index = [ i for i in range(0,len(train_target)) ] np.random.shuffle(index)...原创 2018-05-20 13:21:12 · 13119 阅读 · 9 评论 -
强化学习系列(1):强化学习(Reinforcement Learning)
强化学习前世今生如今机器学习发展的如此迅猛,各类算法层出不群,特别是深度神经网络的发展,为非常经典的强化学习带来了新的思路,虽然强化学习一直在发展中,但在2013年这个关键点,DeepMind大神David Sliver使用了神经网络逼近函数值后,开始了新的方向,又一发不可收拾的证明了确定性策略等,纵观近四年的ICML,NPIS等会议论文,都有涉猎。因此本文在参考已有论文,博客原创 2018-02-02 10:37:29 · 39376 阅读 · 5 评论 -
Ubuntu 16.04 & GTX 1050+cuda8.0 +cuDNN5.1 的深度学习开发环境搭建/ERROR: Unable to load the kernel module 'nvidi
ERROR: Unable to load the kernel module 'nvidia.ko'. This happens most frequently when this kernel module was builtUbuntu 16.04 & GTX 1050+cuda8.0 +cuDNN5.1 的深度学习开发环境搭建/转载 2017-10-24 14:03:26 · 2925 阅读 · 0 评论 -
Tensorflow自定义读取文件
转载地址:http://blog.csdn.net/gsww404/article/details/78083169Tensorflow数据读取有三种方式:Preloaded data: 预加载数据Feeding: Python产生数据,再把数据喂给后端。Reading from file: 从文件中直接读取这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow转载 2017-10-16 14:04:26 · 2590 阅读 · 0 评论 -
TensorFlow使用next_batch()读取/tensorflow.python.framework.errors_impl.InvalidArgumentError: Expect 3 fi
分批次读取csv文件,如图:源代码:import tensorflow as tfimport numpy as npdef readMyFileFormat(fileNameQueue): reader = tf.TextLineReader() key, value = reader.read(fileNameQueue) record_defa原创 2017-09-25 15:06:24 · 14286 阅读 · 0 评论 -
深度学习之正则化系列(2):数据集增强(数据增广)
让机器学习模型泛化得更好的最好办法是使用更多的数据进行训练。当然,在实践中,我们拥有的数据量是很有限的。解决这个问题的一种方法是创建假数据并添加到训练集中。对于一些机器学习任务,创建新的假数据相当简单。对分类来说这种方法是最简单的。分类器需要一个复杂的高维输入 x,并用单个类别标识 y 概括 x。这意味着分类面临的一个主要任务是要对各种各样的变换保持不变。我们可以轻易通过转换训练集中的 x 来生成...原创 2018-05-24 17:30:35 · 5985 阅读 · 0 评论