机器学习 (一):线性回归

1. 最小二乘法与最大似然

在回归问题中,我们最常用的就是最小二乘法,也就是均方误差MSE。

                                                                               J(\theta )=\frac{1}{2}\sum (h(\theta)-y)^2

这个形式乍一看很合逻辑,也没有想过为什么会用这种形式。要衡量回归问题的误差,肯定要有模型和目标的差值,再平方一下,求导方便。但其实这个形式可以从最大似然推出来。

推导

现在我们假设目标变量t,假设函数y,我们将目标变量看做是假设函数加上高斯噪声(根据中心极限定理,大量数据下噪声服从高斯分布),其中高斯分布的均值是0,方差是\sigma ^2

t=y(x,w)+\epsilon

我们发现在假设高斯噪声下最大似然和最小二乘法形式相同

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值