1. 最小二乘法与最大似然
在回归问题中,我们最常用的就是最小二乘法,也就是均方误差MSE。
这个形式乍一看很合逻辑,也没有想过为什么会用这种形式。要衡量回归问题的误差,肯定要有模型和目标的差值,再平方一下,求导方便。但其实这个形式可以从最大似然推出来。
推导
现在我们假设目标变量t,假设函数y,我们将目标变量看做是假设函数加上高斯噪声(根据中心极限定理,大量数据下噪声服从高斯分布),其中高斯分布的均值是0,方差是:
我们发现在假设高斯噪声下最大似然和最小二乘法形式相同
在回归问题中,我们最常用的就是最小二乘法,也就是均方误差MSE。
这个形式乍一看很合逻辑,也没有想过为什么会用这种形式。要衡量回归问题的误差,肯定要有模型和目标的差值,再平方一下,求导方便。但其实这个形式可以从最大似然推出来。
现在我们假设目标变量t,假设函数y,我们将目标变量看做是假设函数加上高斯噪声(根据中心极限定理,大量数据下噪声服从高斯分布),其中高斯分布的均值是0,方差是:
我们发现在假设高斯噪声下最大似然和最小二乘法形式相同