题目描述:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?
想法:
动态规划
这类题一般都是定义dp[i][j],网格类动态规划问题。首先要明白dp[i][j]代表的意思。在本题中,dp[i][j]表示到达坐标(i,j)时的最大路径值。
注:这类题中dp[i][j]一般都与dp[i-1][j],dp[i][j-1]有关系。
1 | 1 |
1 | # |
1 | $ |
举例:如图3行2列,边缘格都设置为1(因为由题意可知,从开始到右和下都可以走,向右代表一条路径,向下代表另外一条路径)。我们看“#”代表的单元格,考虑一下从哪些单元格可以到达“#”代表的单元格?这里设到达"#"的最大路径是dp[i][j],可以知道dp[i][j]=dp[1][1],dp[0][1]和dp[1][0]都可以到达"#"(注意是向下或者向右这个条件),所以dp[i][j]=dp[i-1][j]+dp[i][j-1]
代码:
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int [m][n];
for(int i = 0; i < m; i++) dp[i][0] = 1;
for(int i = 0; i < n; i++) dp[0][i] = 1;
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
//这里注意返回的是dp[m-1][n-1]
return dp[m-1][n-1];
}
}
参考链接:https://leetcode-cn.com/problems/unique-paths/solution/dong-tai-gui-hua-by-powcai-2/