每日一题:力扣62. 不同路径

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?

想法:

动态规划

这类题一般都是定义dp[i][j],网格类动态规划问题。首先要明白dp[i][j]代表的意思。在本题中,dp[i][j]表示到达坐标(i,j)时的最大路径值。

注:这类题中dp[i][j]一般都与dp[i-1][j],dp[i][j-1]有关系。

11
1#
1$

举例:如图3行2列,边缘格都设置为1(因为由题意可知,从开始到右和下都可以走,向右代表一条路径,向下代表另外一条路径)。我们看“#”代表的单元格,考虑一下从哪些单元格可以到达“#”代表的单元格?这里设到达"#"的最大路径是dp[i][j],可以知道dp[i][j]=dp[1][1],dp[0][1]和dp[1][0]都可以到达"#"(注意是向下或者向右这个条件),所以dp[i][j]=dp[i-1][j]+dp[i][j-1]

代码:

class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp = new int [m][n];
        for(int i = 0; i < m; i++) dp[i][0] = 1;
        for(int i = 0; i < n; i++) dp[0][i] = 1;

        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        //这里注意返回的是dp[m-1][n-1]
        return dp[m-1][n-1];
    }
}

参考链接:https://leetcode-cn.com/problems/unique-paths/solution/dong-tai-gui-hua-by-powcai-2/

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值