并查集知识总结(师傅的)

1.非路径压缩: 
递归版:

__int64 findroot(__int64 x)
{
    if(x!=fa[x]) return findroot(fa[x]);
    return fa[x];
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

非递归版:

__int64 findroot(__int64 x)//查找x的根节点
{
    __int64 r=x;
    while(r!=fa[r])  r=fa[r]; 
    return r;
} 
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6


2.带路径压缩:

递归版:

__int64 findroot(__int64 x)//找x的根节点 
{
    if(x==fa[x])  return fa[x];
    fa[x]=findroot(fa[x]);//从x向上路径压缩
    return fa[x];
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

非递归版:

__int64 findroot(__int64 x)
{
    __int64 r=x;
    while(r!=fa[r])  r=fa[r];//查找根节点 
    while(x!=fa[x])     //从a开始,向上路径压缩 
    {
        __int64 tem=fa[x];
        fa[x]=r;
        x=tem;
    }
    return r;
 } 
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

还可根据题意对此函数进行修改使其实现其他的功能 如:记录x的父节点有多少个.



3.合并函数:

void Union(__int64 x,__int64 y)
{
    __int64 fx=findroot(x);
    __int64 fy=findroot(y);
    if(fx!=fy)
    {
        fa[x]=fy;//另x的根节点为fy 
    //  fa[fx]=fy;另x所在的树的根节点为fy 
    }
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

注意:区分是合并一个节点到一个树上还是合并两棵树; 
查找根节点时用不用路径压缩:一般来说有向图不用压缩,具体判断还应结合时间复杂度.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值