1240 莫比乌斯函数

12 篇文章 0 订阅

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数)。
具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个数n, 计算miu(n)。
Input
输入包括一个数n,(2 <= n <= 10^9)
Output
输出miu(n)。
Input示例
5
Output示例
-1

题意:》》》》》

思路:其实就是分解质因子的简单应用,先判断是否是质因子的平方,然后如果他除以他的质因子多次的话直接返回0,否则用一变量记录就行了;

下面附上代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int miu(int n)
{
	int p=sqrt(n);
	if(p*p==n) return 0;
	int k=1,flag=1;
	for(int i=2;i<=p;i++)
	{
		if(n%i==0)
		{
			n/=i;
			while(n%i==0)
			{
				n/=i;
				k++;
			}
			if(k>1) return 0;
			else 
			{
				k=1;
				flag++;
			}
		}
	}
    flag=pow(-1,flag);
	return flag;
}
int main()
{
	int n;
	cin>>n;
	printf("%d\n",miu(n));
	return 0;
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值