喷水装置(二)
时间限制:3000 ms | 内存限制:65535 KB
难度:4
描述
有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
输入
第一行输入一个正整数N表示共有n次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。
输出
每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。
样例输入
2
2 8 6
1 1
4 5
2 10 6
4 5
6 5
样例输出
1
时间限制:3000 ms | 内存限制:65535 KB
难度:4
描述
有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
输入
第一行输入一个正整数N表示共有n次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。
输出
每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。
样例输入
2
2 8 6
1 1
4 5
2 10 6
4 5
6 5
样例输出
1
2
题意:》》》
思路:此问题可转化为区间覆盖问题,每个区间的最表可以表示出来,接下来就是贪心算法,先将每个区间的左端点升序来排序,然后选取右端点尽量长的区间,当然要选取的区间的左端点小于上一区间的右端点,直到将整个区间覆盖或者区间选取到最后结束,同时还要注意纵向的草坪要全部覆盖才能将其选为可选取的区间,再有就是精度问题,
下面附上代码:
#include<bits/stdc++.h>
using namespace std;
struct node{
double a;
double b;
}s[10005];
double len(double a,double b)
{
return sqrt(a*a-b*b);
}
bool cmp(node A,node B)
{
return A.a<B.a;
}
int main()
{
int N;
double n,w,h,x,y;
scanf("%d",&N);
while(N--)
{
int j=0;
scanf("%lf %lf %lf",&n,&w,&h);
for(int i=0;i<n;i++)
{
scanf("%lf %lf",&x,&y);
if(y>h/2.0)
{
double l=len(y*1.0,h/2.0);
s[j].a=x-l;
s[j].b=x+l;
j++;
}
}
sort(s,s+j,cmp);
double p=0.0;
int k=0;
while(p<w)
{
double m=0.0;
for(int i=0;(i<j)&&(s[i].a<=p);i++)
if((s[i].b-p)>m) m=s[i].b-p;
if(m!=0)
{
k++;
p+=m;
}
else
break;
}
if(p<w) printf("0\n");
else printf("%d\n",k);
}
return 0;
}