map和set的底层结构

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

一、AVL 树

1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

在这里插入图片描述
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

1.2 AVL树节点的定义

AVL树节点的定义:

template<class K,class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left; // 该节点的左孩子
	AVLTreeNode<K, V>* _right;// 该节点的右孩子
	AVLTreeNode<K, V>* _parent;// 该节点的双亲
	int _bf;// 该节点的平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
	{}
};

1.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子

在这里插入图片描述

	bool Insert(const pair<K, V>& kv)
	{
		// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
		 // ...

		// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树
			//  的平衡性

		  /*
		  cur插入后,parent的平衡因子一定需要调整,在插入之前,parent
		  的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
		   1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可
		   2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可
		  此时:parent的平衡因子可能有三种情况:0,正负1, 正负2
		   1. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整
		  成0,此时满足AVL树的性质,插入成功
		   2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更
		  新成正负1,此时以parent为根的树的高度增加,需要继续向上更新
		   3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进
		  行旋转处理
		  */
		if (_root == nullptr)//第一个节点,直接插入
		{
			_root = new Node(kv);
			return true;
		}

		//根据要插入节点值的大小找到要插入节点的父亲节点位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if(cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;//要插入的节点的已经存在
			}
		}

		//根据插入节点的值来确定插在父节点的哪边
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//以上是二叉搜索树的插入操作,二叉平衡搜索树还需要进行平衡
		// ... AVL树要控制平衡
		// 更新平衡因子
		while (parent)//时间复杂度最差更新到根节点
		{	
			// 更新双亲的平衡因子
			//cur在parent左边,平衡因子-1,在右边,平衡因子+1
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;
			
			// 更新后检测双亲的平衡因子
			if (parent->_bf == 0)//插入后parent平衡因子为0的时候说明树已经达到平衡,直接退出循环
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 插入前父亲的平衡因子是0,插入后父亲的平衡因为为1或者 -1 ,说明以父亲为根的二叉树
				//的高度增加了一层,因此需要继续向上调整
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//父亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以parent
				//为根的树进行旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)//右右,左转即可
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)//左左,右转即可
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)//右左,先右转再左转
				{
					RotateRL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)//左右,先左转再右转
				{
					RotateLR(parent);
				}
				break;
			}
			else
			{
				assert(false);
			}
		}

		return true;
	}

1.4 AVL树的旋转

旋转的时候需要注意的问题:
1、保持他是搜索树
2、变成平衡树且降低这个子树的高度

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
1.新节点插入较高左子树的左侧—左左:右单旋
在这里插入图片描述上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
1、30节点的右孩子可能存在,也可能不存在
2、60可能是根节点,也可能是子树
- 如果是根节点,旋转完成后,要更新根节点
- 如果是子树,可能是某个节点的左子树,也可能是右子树

	void RotateR(Node* parent)
	{
		// cur: parent的左孩子
		// curright: parent左孩子的右孩子
		Node* cur = parent->_left;
		Node* curright = cur->_right;

		// 旋转完成之后,30的右孩子作为父亲的左孩子
		parent->_left = curright;
		// 如果30的左孩子的右孩子存在,更新其父亲
		if (curright)
			curright->_parent = parent;

		// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
		Node* ppnode = parent->_parent;

		// 60 作为 30的右孩子
		cur->_right = parent;
		// 更新60的父亲
		parent->_parent = cur;

		// 如果60是根节点,更新指向根节点的指针
		if (ppnode == nullptr)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			// 如果60是子树,可能是其父亲的左子树,也可能是右子树
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}
			cur->_parent = ppnode;
		}

		// 根据调整后的结构更新部分节点的平衡因子
		cur->_bf = parent->_bf = 0;
	}
  • 新节点插入较高右子树的右侧—右右:左单旋
    在这里插入图片描述
	void RotateL(Node* parent)
	{
		Node* cur = parent->_right;
		Node* curleft = cur->_left;

		parent->_right = curleft;
		if (curleft)
		{
			curleft->_parent = parent;
		}

		cur->_left = parent;
		Node* ppnode = parent->_parent;

		parent->_parent = cur;

		if (parent == _root)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}
			cur->_parent = ppnode;
		}
		parent->_bf = cur->_bf = 0;
	}

  • 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
    三种情况会引发双旋
    1、60就是新增
    2、b插入
    3、c插入在这里插入图片描述
    将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。
	void RotateLR(Node* parent)
	{
		Node* cur = parent->_left;
		Node* curright = cur->_right;
		int bf = curright->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		if (bf == 0)
		{
			parent->_bf = 0;
			cur->_bf = 0;
			curright->_bf = 0;
		}
		else if(bf = -1)
		{
			parent->_bf = 1;
			cur->_bf = 0;
			curright->_bf = 0;
		}
		else if (bf = 1)
		{
			parent->_bf = 0;
			cur->_bf = -1;
			curright->_bf = 0;
		}
	}
  • 新节点插入较高右子树的左侧—右左:先右单旋再左单旋
    在这里插入图片描述
	void RotateRL(Node* parent)
	{
		Node* cur = parent->_right;
		Node* curleft = cur->_left;

		int bf = curleft->_bf;
		RotateR(parent->_right);
		RotateL(parent);


		if (bf == 0)
		{
			parent->_bf = 0;
			cur->_bf = 0;
			curleft->_bf = 0;
		}
		else if(bf == 1)
		{
			parent->_bf = -1;
			cur->_bf = 0;
			curleft->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			cur->_bf = 0;
			curleft->_bf = -1;
		}
		else
		{
			assert(false);
		}
	}

总结:
假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑
1、parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为cur
当cur的平衡因子为1时,执行左单旋
当cur的平衡因子为-1时,执行右左双旋
2.、parent的平衡因子为-2,说明parent的左子树高,设parentt的左子树的根为cur
当cur的平衡因子为-1是,执行右单旋
当cur的平衡因子为1时,执行左右双旋
旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。

1.5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1、 验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2、验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
	int Height()
	{
		return Height(_root);
	}

	int Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHight = Height(root->_left);
		int rightHight = Height(root->_right);

		return leftHight > rightHight ? leftHight + 1 : rightHight + 1;
	}

	bool IsBalance()
	{
		return IsBalance(_root);
	}

	bool IsBalance(Node* root)
	{
		// 空树也是AVL树
		if (root == nullptr)
			return true;

		// 计算root节点的平衡因子:即root左右子树的高度差
		int leftHight = Height(root->_left);
		int rightHight = Height(root->_right);
		
		// 如果计算出的平衡因子与root的平衡因子不相等,或者
		// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if(rightHight - leftHight != root->_bf)
		{
			cout << "平衡因子异常" << root->_kv.first << "->" << root->_bf << endl;
			return false;
		}

		return abs(rightHight - leftHight) < 2
			&& IsBalance(root->_left)
			&& IsBalance(root->_right);
	}

1.6 AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

1.7 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡**,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。**因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
以上代码测试运行:
在这里插入图片描述

二、红黑树

2.1 红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
在这里插入图片描述

2.2 红黑树的性质

1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点),也就是NIL叶节点都是黑色的

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?
答:在红黑树中,根节点是黑色的,每个叶子节点也是黑色的。如果一个节点是红色的,那么它的两个子节点都是黑色的。这意味着在红黑树的最长路径上,红色节点的数量不会超过黑色节点的数量。
考虑红黑树中的最短路径,这条路径上的所有节点都是黑色的。因为红色节点的子节点必须是黑色的,所以红色节点不能在最短路径上。因此,最短路径上的节点数量至少为1(根节点),并且都是黑色的。
现在考虑红黑树中的最长路径。根据性质,这条路径上的红色节点数量不会超过黑色节点的数量。因此,最长路径上的节点数量最多是黑色节点的两倍。
综上所述,红黑树的最长路径节点个数不会超过最短路径节点个数的两倍。这是因为红黑树的性质限制了红色节点的数量,从而保证了树的平衡性。

2.3 红黑树节点的定义

// 节点的颜色
enum Colour
{
	RED,
	BLACK
};

// 红黑树节点的定义
template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;	// 节点的左孩子
	RBTreeNode<K, V>* _right;	// 节点的右孩子
	RBTreeNode<K, V>* _parent;	// 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)

	pair<K, V> _kv;	// 节点的值
	Colour _col;	// 节点的颜色

	RBTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{}
};

思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
在红黑树中,节点默认颜色为红色,这主要是为了满足红黑树的性质,以保证树在插入新节点时的平衡性。
如果每次新增节点都是黑色,那么必定会违反规则4(所有路径上黑色节点数量相同的这条规则)。
如果每次新增节点都是红色,那么该节点的父节点不一定是红色的,有可能是黑色的,这样虽然不会违反规则4,但是可能会违反规则3(无连续红色节点),这就要进行调整。
因为在红黑树中,每个节点要么是红色,要么是黑色。如果新插入的节点是红色,那么最多只会影响到一条路径上的节点颜色,而不会影响到树中其他路径上的节点颜色。
但是,如果新插入的节点是黑色,那么就有可能会违反红黑树的性质,导致需要对树进行重新平衡,这可能会影响到树中多个路径上的节点颜色。因此,将节点默认颜色设置为红色可以最大程度地减少对红黑树造成的影响。
所以在插入新节点时,如果没有额外信息来指定节点颜色,将节点的默认颜色设置为红色可以最大程度地减少对红黑树造成的影响。

2.4 红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1. 按照二叉搜索的树规则插入新节点

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//以上完成二叉搜索树规则插入操作
		//下面完成红黑树规则
	}

2. 检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

  • 情况一: cur为红,p为红,g为黑,u存在且为红

在这里插入图片描述
cur和p均为红,违反了性质三,此处能否将p直接改为黑?
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

  • 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

在这里插入图片描述
p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色–p变黑,g变红

  • 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

在这里插入图片描述
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2
在这里插入图片描述
在这里插入图片描述
针对每种情况进行相应的处理即可。

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//以上完成插入操作
		//下面完成红黑树规则
		while (parent && parent->_col == RED)
		{
			// 注意:grandfather一定存在
			// 因为parent存在,且不是黑色节点,则parent一定不是根,则其一定有双亲
			Node* grandfather = parent->_parent;
			// 先讨论左侧情况
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				// 情况一:叔叔节点存在,且为红
				if (uncle && uncle->_col == RED)
				{
					//变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					//继续向上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else// 情况二:叔叔节点不存在,或者叔叔节点存在且为黑
				{
					//     g
					//   p
					// c
					if (cur == parent->_left)//左左
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else//左右
					{
						//     g
						//   p
						//		c
						RotateL(parent);
						RotateR(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;//
				}
			}
			// 再讨论右侧情况
			else//parent == grandfather->_right
			{
				Node* uncle = grandfather->_left;
				//情况一:叔叔节点存在,且为红
				if (uncle && uncle->_col == RED)
				{
					//变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续向上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				// 情况二:叔叔节点不存在,或者叔叔节点存在且为黑
				else
				{
					if (cur == parent->_right)//右右
					{
						// g
						//	  p
						//       c
						RotateL(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
						}
					else//右左
					{
						// g
						//	  p
						// c
						RotateR(parent);
						RotateL(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;
		return true;
	}

	void RotateL(Node* parent)
	{
		++_rotateCount;

		Node* cur = parent->_right;
		Node* curleft = cur->_left;

		parent->_right = curleft;
		if (curleft)
		{
			curleft->_parent = parent;
		}

		cur->_left = parent;
		Node* ppnode = parent->_parent;
		parent->_parent = cur;

		if (ppnode == nullptr)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (parent == ppnode->_left)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}

			cur->_parent = ppnode;
		}
	}

	void RotateR(Node* parent)
	{
		++_rotateCount;

		Node* cur = parent->_left;
		Node* curright = cur->_right;

		parent->_left = curright;
		if (curright)
		{
			curright->_parent = parent;
		}

		Node* ppnode = parent->_parent;
		cur->_right = parent;
		parent->_parent = cur;

		if (ppnode == nullptr)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (parent == ppnode->_left)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}

			cur->_parent = ppnode;
		}
	}

总结:
红黑树插入关键看uncle
1、uncle存在且为红,变色+继续往上更新
2、uncle不存在,uncle存在且为黑,旋转+变色

2.5 红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质
	//blacknum用来记录每条路径黑色节点的个数,这里不要传引用,这里才能记录每条路径的数量
	bool CheckColour(Node* root, int blacknum, int benchmark)
	{
		//走到null之后,判断blacknum和benchmark是否相等
		if (root == nullptr)
		{
			if (blacknum != benchmark)//root等于空说明已经到路径的尾部,如果和基准值不一致,说明不是红黑树(每条线路的黑色节点相等)
				return false;

			return true;
		}

		if (root->_col == BLACK)
		{
			++blacknum;//记录黑色节点的个数
		}

		//检测当前节点与其双亲是否都为红色
		//当前节点为颜色为红色且父亲存在且父亲颜色为红色,说明出现连续红色节点,返回false
		if (root->_col == RED && root->_parent && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "出现连续的红色节点,违反性质三" << endl;
			return false;
		}

		return CheckColour(root->_left, blacknum, benchmark)
			&& CheckColour(root->_right, blacknum, benchmark);
	}

	bool IsBalance()
	{
		return IsBalance(_root);
	}

	bool IsBalance(Node* root)
	{
		// 空树也是红黑树
		if (root == nullptr)
			return true;

		// 检测根节点是否满足情况,根节点不是黑色节点,直接返回false
		if (root->_col != BLACK)
			return false;

		//设置一个基准值,获取任意一条路径中黑色节点的个数
		//直接算最左边的路径方便,不管基准值是不是正确的后面只要有一条路径和基准值不相等,说明不满足红黑树条件
		int benchmark = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
				++benchmark;

			cur = cur->_left;
		}
		// 检测是否满足红黑树的性质
		return CheckColour(root, 0, benchmark);//检查每条路径的黑色节点数量是否相等
	}

红黑树插入测试:
在这里插入图片描述

2.6 红黑树的删除(了解)

http://www.cnblogs.com/fornever/archive/2011/12/02/2270692.html

2.7 红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
性能是同一量级的,但是AVL树,控制严格平衡是付出代价插入和删除时需要进行大量的旋转。

int main()
{
	const int N = 10000000;
	vector<int> v;
	v.reserve(N);
	srand(time(0));

	for (size_t i = 0; i < N; i++)
	{
		v.push_back(i);
	}

	RBTree<int, int> rbt;
	for (auto e : v)
	{
		rbt.Insert(make_pair(e, e));
		//cout << "Insert:" << e << "->" << t.IsBalance() << endl;
	}
	cout << rbt.IsBalance() << endl;
	cout << rbt.Height() << endl;
	cout << rbt._rotateCount << endl;


	AVLTree<int, int> avlt;
	for (auto e : v)
	{
		avlt.Insert(make_pair(e, e));
		//cout << "Insert:" << e << "->" << t.IsBalance() << endl;
	}
	cout << avlt.IsBalance() << endl;
	cout << avlt.Height() << endl;
	cout << avlt._rotateCount << endl;

	return 0;
}

运行结果:
在这里插入图片描述
从运行结果可以看出,AVL树的高度更低,但旋转次数也要更多。

2.8 红黑树的应用

  1. C++ STL库 – map/set、mutil_map/mutil_set
  2. Java 库
  3. linux内核
  4. 其他一些库
    http://www.cnblogs.com/yangecnu/p/Introduce-Red-Black-Tree.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值