深度学习训练多少轮?迭代多少次?

深度学习的训练迭代次数并无固定值,通常根据loss值收敛和验证集效果来判断。当loss值无法显著降低时,表示模型收敛,可以停止训练。此外,通过将数据集分为训练集和验证集,观察验证集上的loss值,找到损失最低的点作为最佳模型。在某些情况下,测试集的表现更能反映模型的真实效果,因此,测试集的评估也是决定迭代次数的重要依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习是当今最火的研究方向之一。它以其卓越的学习能力,实现了AI的关键功能。一般来说,深度学习一次肯定是不够的,那么深度学习训练多少轮?迭代多少次?大家所关心的问题,解答来了。

深度学习训练迭代多少次?

翻了翻各位大牛的研究成果,有训练10个迭代的,有30个,甚至也有1万个以上的。这就让小白迷茫了,到底训练多少次合适?训练的检验标准是什么?

有一些大牛上来直接就说训练多少次,也不解释为什么,就说是凭经验,这种我们学不来。还有一些专家给出了一些理由,我们来总结一下。

01 当loss值收敛时结束迭代

深度学习的一个关键原理就是比较学习结果和样本标签之间的差距。理论上差距越小,表明学习的效果越好。这个差距就是loss值。

Loss值不可能变为0,只能无限逼近0。所以通过脚趾都能想到,当loss值无法变小的时候,这称为收敛,就是学习结束之时。比如像下图这样的:

02 使用验证集来检验训练成果

你以为就靠一个收敛就能解决一切问题吗?没那么简单。

深度学习常常会遇到一个问题——过拟合。训练的时候学习效果很好,但是拿到其它地方测试发现效果就不行了。

就是说,并不一定是学习效果最好的时候才停止。那如何来判断停止的时机呢?

有学者提出了验证集。

就是说,把训练集分为2部分,比如70%用来训练,30%用来验证。就像下面的代码。

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed)

然后在训练时加入验证的参数,就像这样:

autoencoder.fit(train_data, train_data,

epochs=50,

batch_size=128,

shuffle=True,

validation_data=(noisy_imgs, data_test)

)

然后就是观察验证曲线,什么时候验证的loss值最小,就选那一次的训练模型进行测试应用。

比如下图,上面是训练曲线,下面是验证曲线。学习15次的效果就已经比较好了。

03 使用测试集来检验训练成果

随着研究的广泛开展和对学习效果的极致追求,我们渐渐发现了一个问题——有时候从验证曲线看到的最优值并不是真实预测过程的最好效果。比如这种情况:对大尺度数据进行深度学习去噪。

先说结论:最优方法是通过测试效果来决定迭代的次数。

具体怎样做的呢?比如这样的案例:一张大的二维数据,比如300*300,像这样的:

免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号 321 领取(一定要发暗号 321)

一、人工智能课程及项目

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注公众号【AI技术星球】发送暗号 321 免费领取文中资料

### PointPillars 模型的训练轮数机器学习领域,`epoch_num` 是指模型在整个训练数据集上完成一前向传播和反向传播所需的迭代次数。对于 PointPillars 这样的基于点云的三维目标检测算法,其具体的 `epoch_num` 取决于多个因素,包括但不限于数据集规模、硬件资源以及期望达到的性能指标。 尽管未直接提及 PointPillars 的具体训练轮数值[^2],但在一般情况下,类似的深度学习模型可能需要数十至数百个 epoch 才能充分收敛并获得良好的性能表现。例如,在某些实验配置中,可能会设定 `epoch_num=80` 来确保模型能够经过足够的训练过程以优化参数[^1]。 值得注意的是,实际应用中的最佳 `epoch_num` 值往往依赖于验证集上的效果监控来决定。如果过早停止训练,则可能导致欠拟合;而过度延长训练时间又容易引发过拟合现象。因此,建议采用早期停止策略(Early Stopping),即当验证损失不再显著下降时自动终止训练,从而动态调整合适的训练次。 ```python import torch # 定义训练循环函数 def train_model(model, dataloader, optimizer, criterion, device, num_epochs): model.to(device) best_loss = float('inf') for epoch in range(num_epochs): # 遍历指定数量的epochs running_loss = 0.0 for inputs, labels in dataloader: inputs, labels = inputs.to(device), labels.to(device) # 清零梯度 optimizer.zero_grad() # 正向传播 + 后向传播 + 更新权重 outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(dataloader.dataset) # 如果当前epoch的loss更低则保存模型状态 if epoch_loss < best_loss: best_loss = epoch_loss torch.save(model.state_dict(), 'best_model.pth') print(f'Epoch {epoch}/{num_epochs - 1}, Loss: {epoch_loss:.4f}') ``` 上述代码片段展示了一个典型的 PyTorch 训练流程实现方式,其中包含了如何控制最大训练轮数 (`num_epochs`) 并记录最优模型的状态逻辑。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值