人工智能可以用在能源行业吗?

人工智能在能源行业有着非常广泛的使用,那么具体来讲,人工智能在能源行业的有哪些实际应用案例呢?众所周知,能源行业会产生大量的数据。为了将这些数据转化为提高生产率和削减成本的驱动力,主要的能源行业公司尤其是石油和天然气巨头,以及可再生能源公司,都把注意力转向了人工智能。

人工智能在能源行业的实际应用案例

一、Storage(能源储藏)

根据Greentech Media最近的一份报告,美国的能源储藏在2017年第四季度达到了一个新的里程碑:在2013年至2017年间,累计储藏量已超过1000兆瓦时。该报告还预测,这个数字将在今年翻一番。随着储藏容量的提升和新技术的出现,人工智能正在提升这个市场的效率。

案例1:Stem

位于加利福尼亚州的Stem公司开发了代号为雅典娜(Athena)的项目,它利用人工智能绘制出能源的使用情况,并允许客户跟踪能源价格的波动,从而更有效地使用被储藏的能源。Stem已经从包括美国能源部、GE Ventures和新加坡主权财富基金淡马锡控股在内的多家投资者那里,融到了超过3,700万美元的资金。

二、The Autonomous Grid(智能电网)

如今,电网的能量来源通常有很多,除了传统的发电以外,还有风能和太阳能,这使得运营电网系统的过程也变得更加复杂。通过人工智能来对大规模的数据集进行分析,这个多源收集的过程更加稳定和高效。

案例1:美国能源部

2017年9月,美国能源部向斯坦福大学的SLAC研究人员颁发了一项研究奖,奖励他们利用人工智能技术改善了电网的稳定性。通过用过去的数据来对电力波动和电网薄弱环节进行编程,新的“智能电网”将自动对重大事件作出快速而准确的反应。

案例2:西门子

智能电网也能够在同一时间更好地管理不同类型的能源。西门子公司发布了一个软件包来操作网络,即所谓的“主动网络管理”(ANM,active network management)。

ANM的原理是,通过跟踪电网如何与不同的能量负载相互作用,来调整其可调节的部件,从而达到提高效率的目的。虽然这之前是手动调整的,但当新的能源生产者(比如太阳能发电厂)开始工作时,或者新的能源消耗者开始接入网格时,ANM会对电网做出相应的调整。因此,ANM也为电动汽车利用智能电网进行充电奠定了基础。

案例3:英国国家电网

2017年3月,被谷歌收购的人工智能公司DeepMind,与英国国家电网联合宣布,他们计划将DeepMind的人工智能技术添加到英国的电力系统中。该项目将处理天气预报、互联网搜索等海量信息,以开发需求激增的预测模型。

案例4:Grid Edge

英国的一家名为Grid Edge的公司(提供基于云计算的电力管理软件服务)声称,他们利用人工智能技术对能源配置进行了预测和优化,实现了将控制权交还给了电力使用者。具体的方法是,Grid Edge操作一个VPN,通过它来连接和分析用户所在建筑的能源消耗数据,利用这些信息,Grid Edge与连接的电网进行通信,并制定相应的调度策略。这些策略的目的是节约能源,避免超载。

三、Failure Management(故障管理)

2017年11月,印度北部的一座燃煤电厂发生爆炸,造成32人死亡,原因是煤气管道堵塞导致锅炉爆炸。这是能源行业经常发生的一类故障。导致事故的原因是没有对设备进行经常性的检查,而且世界上许多地方都没有严格的监管规定,因此设备故障是很常见的。

使用人工智能来观察设备并在事故发生前检测出故障,可以节省时间和金钱,甚至挽救生命。目前,许多创业公司正在试图将这项服务提供给能源行业。

案例1:SparkCognition

2017年12月,美国能源部授予SparkCognition公司一个奖项,即利用人工智能提高燃煤电厂的发电量。该公司将解析学、传感器和操作中产生的数据三者相结合,来预测关键的基础设施何时会崩溃。

案例2:AES Corporation

2017年9月,美国能源巨头AES电力公司宣布了进军人工智能的计划,将其作为提高公司的警觉性、效率和保护公司财产的手段,主要针对的是他们的太阳能电站和电网系统。

四、Upstream Exploration(油气勘探)

案例1:BP Ventures(英国石油风险投资公司)Beyond Limits

BP Ventures(英国石油风险投资公司)投资了一家名为Beyond Limits的人工智能公司。该公司曾参与在外太空进行的勘探试验。在投资Beyond Limits的时候,BP Ventures表示将计划使用Beyond Limits的油气勘探技术,寻找新的石油储量。

案例2:Chevron(雪佛龙)

石油巨头雪佛龙正在利用人工智能在加州各地寻找新油井,以及具有额外价值的旧油井。

五、Energy Consumption(能源的消费和消耗)

通过对个人和企业的能源消费行为进行监测,人工智能可以提供优化能源消耗过程的解决方案。

案例1:Alphabet's Nest

Alphabet旗下的子公司Nest,开发了一款智能恒温器,能够通过自动适应用户行为,达到减少能源耗费的目的。一旦Nest被安装在用户的家里,它就会开始学习居住者的生活习惯,并相应地调整温度。据Nest称,该公司的技术已经为其用户节省了10%到12%的取暖费。

案例2:Nnergix

西班牙的Nnergix公司,运用机器学习技术来预测大气和天气状况对可再生能源产能的影响,比如推算光伏发电厂每小时的发电量。

案例3:Google Sunroof(谷歌天窗)

谷歌发布了一个名为Sunroof的工具,来计算太阳能对美国家庭的影响。该项目采用了几个因素来计算使用太阳能能够节省下来多少资金,这些因素包括天气数据、电费、3D建模和阴影计算。

简而言之,人工智能可以提高数据里正确信息的准确性和可用性,从而实现更有效和更有效的运作。因此人工智能在能源行业才有着如此广泛的实际应用案例。

免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面是部分截图,文末附免费下载方式。

一、人工智能课程及项目

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码免费下载文中资料。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值