
人工智能
文章平均质量分 88
迪哥谈AI
专注于机器学习与计算机视觉领域。感谢关注~~~
展开
-
通透!一文搞懂大模型、机器学习与深度学习的区别!
机器学习一般只接收结构化数据的输入,如果是非结构化数据,也要转化为结构化数据,比如本案例中虽然原始输入的是一些文本,但真正输入到模型进行训练的数据已经被转化成了结构化的特征向量,如上图中的[[1, 0], [1, 1], [1, 0], [0, 1]],每一行代表的是一段文本输入转化成的的结构化输入,这里一共有四个记录。:假如大模型的预训练模型不足以满足某特定任务的要求,那么还可以针对特定任务再进行微调训练,微调训练过程等同于深度学习,即构造针对特定任务的x,y来进行深度学习的训练。原创 2025-04-28 11:19:14 · 498 阅读 · 0 评论 -
GNN+Transformer的前沿进展!
近年来,因其在处理复杂数据结构和序列依赖性方面的卓越表现而受到广泛关注。这种优势使得将GNN与Transformer结合成为图表示学习领域的一个新兴且充满潜力的研究方向。通过结合这两种模型,我们不仅能够扩大模型的感受野,捕捉更复杂的图结构信息,还能强化信息传递机制,从而提高推荐系统的准确性。此外,这种结合还能简化模型结构,降低计算成本,并提升训练效率。本文精心挑选了过去两年中顶级会议和期刊上发表的的GNN与Transformer结合的创新方案,与您分享。原创 2025-04-27 11:50:14 · 899 阅读 · 0 评论 -
终于把卷积神经网络算法搞懂了!!
今天给大家分享一个强大的算法模型,卷积神经网络算法卷积神经网络算法(CNN)是一种深度学习模型,广泛应用于图像处理、计算机视觉和自然语言处理等领域。CNN 通过模拟生物视觉系统的处理方式,能够自动从原始数据中提取特征,从而实现对输入数据的自动学习和分类。相比传统的全连接神经网络,CNN具有更高的效率和较低的计算复杂度。原创 2025-04-26 15:15:13 · 822 阅读 · 0 评论 -
基于深度学习的轮胎缺陷检测系统
由于全球制造业面临着在最短的时间内向市场推出多种最高质量产品的压力,因此所有职能向人工智能驱动的自动化的转变已成为必然。在质量检测方面,人工智能驱动的计算机视觉系统已经能够简化生产流程,使产品符合公司制定的质量标准。这反过来又带来了更高效率、更低运营成本的优势,同时实现 24/7 生产和更快的决策。全球轮胎制造商一直是质量保证等各个领域人工智能技术的早期采用者之一。人工智能的主要应用之一是使用基于深度学习的计算机视觉系统进行轮胎缺陷检测。原创 2025-04-25 10:51:58 · 557 阅读 · 0 评论 -
YOLOv8+ Deepsort+Pyqt5车速检测系统
该系统通过YOLOv8进行高效的目标检测与分割,结合DeepSORT算法完成目标的实时跟踪,并利用GPU加速技术提升处理速度。系统支持模块化设计,可导入其他权重文件以适应不同场景需求,同时提供自定义配置选项,如显示标签和保存结果等。随着城市交通压力的增加,智能交通系统(ITS)成为缓解交通拥堵、提高道路安全的重要手段。车辆检测与测速作为ITS的核心模块之一,对提升交通管理效率具有重要意义。YOLOv8和DeepSORT作为当前目标检测与跟踪领域的领先算法,其结合使用能够显著提升系统的实时性和准确性。原创 2025-04-24 11:26:12 · 669 阅读 · 0 评论 -
终于把 Transformer 算法搞懂了!!
大家好,今天给大家分享一个强大的算法模型,Transformer 是一种基于自注意力机制(Self-Attention Mechanism)的深度学习模型,最初由 Vaswani 等人在 2017 年的论文《Attention is All You Need》中提出。原创 2025-04-23 12:02:52 · 671 阅读 · 0 评论 -
CVPR 2025 即插即用卷积-自适应矩形卷积!
本图通过四个子图(a、b、c 和 d)直观地展示了四种不同类型卷积核的工作原理,对比了标准卷积、可变形卷积、多尺度卷积以及本文提出的自适应矩形卷积(ARConv)之间的区别和优势。通过动态调整卷积核的高度、宽度和采样点数量,ARConv 能够更好地适应遥感图像中不同大小和形状的目标,从而实现更高效的特征提取和更优的图像融合效果。传统的卷积操作中,卷积核的形状是固定的(通常是正方形),而 ARConv 能够自适应地学习卷积核的高度和宽度,使其能够根据图像中不同物体的大小动态调整卷积核的形状。原创 2025-04-22 11:43:06 · 705 阅读 · 0 评论 -
复杂网络特征提取-节点特征、边特征和图整体特征
节点的度(Node Degree)是图论和网络分析中的一个基本概念,它指的是与一个节点直接相连的边的数量。原创 2025-04-19 10:55:01 · 764 阅读 · 0 评论 -
机器学习特征工程,全面指南!
这可以通过sklearn的多项式特征轻松实现,它生成一个新的特征集,由所有特征的多项式组合组成,其次数小于或等于指定的次数。注意:在使用卡方检验或单变量选择方法时,要记住一件事,即在非常大的数据集中,大多数特征将显示较小的p值,因此看起来它们具有很高的预测性。该模型在训练和测试数据上都显示出很好的结果,但事实上,这不是因为你的模型真的具有良好的泛化能力,而是因为它使用了测试数据中的信息。因此,你需要密切关注并监控,不要将惩罚设置得太高,以至于删除甚至重要的特征,也不要设置得太低,以至于不删除不重要的特征。原创 2025-04-18 11:31:06 · 778 阅读 · 0 评论 -
【2025】最强总结!十大时间序列模型 !!
大家有问题可以直接在评论区留言即可~喜欢本文的朋友可以起来!原创 2025-04-17 10:54:37 · 778 阅读 · 0 评论 -
终于把卷积神经网络算法搞懂了!!
今天的分享就到这里。今天给大家分享一个超强的算法模型,卷积神经网络算法是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。CNN 的核心思想是通过模拟生物视觉皮层的工作原理,通过利用局部连接和共享权重的方式,使得网络能在图像中捕捉到空间和局部的特征,这使得它在图像分类、目标检测等任务中表现出色。卷积神经网络算法的基本结构卷积神经网络算法主要由卷积层、池化层和全连接层组成。原创 2025-04-16 17:41:28 · 921 阅读 · 0 评论