描述
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
输入
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
输出
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
样例输入
2 1
8 4
4 7
样例输出
0
1
0
来源
NOI
分析
威佐夫博弈模板题,对于两堆石子(a,b),有a<b,每个回合可以从某一堆石子中取出任意个石子,也可以从两堆中取走相同数量的石子。
考虑(0,0)是一种局面,先手必败。
考虑(1,2)是第二种局面,先手必败。此后把这种局面称为奇异局势。
以此类推,有(3,5) (4,7) (5,9) (6,11) … 观察到每个奇异局势a都是未在前面局势中出现的最小自然数,且有b=a+k , k=0,1,2,…
结论:如果a恰好等于(b-a)*黄金分割率(1+sqrt(5))/2 则先手必败。反之先手必胜。
代码
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n,m;
int main(void){
double k=(1+sqrt(5.0))/2;
while(cin>>n>>m){
int a=min(n,m),b=max(n,m);
double t=b-a;
int res=(int)(t*k);
if(res==a) cout<<0<<endl;
else cout<<1<<endl;
}
return 0;
}
给个赞和关注吧
最近我刚回归,阅读量有点下来了,各位帮帮忙支持一下谢谢,你的阅读是我创作的动力。