poj1067:取石子游戏(Betty定理)

本文介绍了一种两人轮流取石子的游戏,分析了获胜策略。当石子堆数量为(a,b),若(a,b)是必败态,则(k,b),(b,k),(k,a),(a,k)为必胜态。作者提出了一个猜想并进行证明,利用Betty定理解决了游戏的胜负判断问题。" 125510419,7648347,SpringAOP的三种切面实现方法,"['后端开发', 'Java', 'Spring框架', 'AOP', '依赖注入']
摘要由CSDN通过智能技术生成

传送门

题意:
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

题解:

好题啊。。

首先我们用 (a,b)(ab) 表示一个状态,那么可以轻松推出以下结论:

1.若 (a,b) 是必败态,那么 (k,b),(b,k),(k,a),(a,k) 是必胜态。

2.对于每个必败态的 a,b 不会在另一个必败态中出现(由1可得)。

3.如果有一个必败态 (a,b) ,那么 (a±k,b±k) 为必胜态。

现在有猜想:
任意非0自然数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值