题意:
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
题解:
好题啊。。
首先我们用 (a,b)(a≤b) 表示一个状态,那么可以轻松推出以下结论:
1.若 (a,b) 是必败态,那么 (k,b),(b,k),(k,a),(a,k) 是必胜态。
2.对于每个必败态的 a,b 不会在另一个必败态中出现(由1可得)。
3.如果有一个必败态 (a,b) ,那么 (a±k,b±k) 为必胜态。
现在有猜想:
任意非0自然数