【题解】PTA浙大版Python程序设计第4章-4 验证“哥德巴赫猜想” (20 分)

该博客介绍了如何使用Python编程验证哥德巴赫猜想,即验证20亿以内的偶数是否可以表示为两个素数之和。博主提供了判断素数的优化方法,并通过循环从2开始遍历,寻找最小的素数解。文章包含代码示例,讨论了输入输出格式和样例。
摘要由CSDN通过智能技术生成

数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。

输入格式:

输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。

输出格式:

在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。

输入样例:

24

输出样例:

24 = 5 + 19

思路:
首先设计判断素数的函数,方法可见另一篇回答统计素数并求和,这里要注意,由于

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值