【工具】PyTorch安装(匹配CUDA版本)

CUDA Toolkit Archive(含PyTorch所有版本)

根据自己需要的CUDA版本和PyTorch版本找到对应的下载命令,这里以PyTorch1.10.1 CUDA 11.3 为例。

在这里插入图片描述

Linux and Windows

# CUDA 10.2
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 -c pytorch

# CUDA 11.3
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge

# CPU Only
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cpuonly -c pytorch
### 查找PyTorchCUDA的兼容版本 为了确保硬件加速功能正常工作,在安装PyTorch时需确认所使用的CUDA工具版本与之匹配。对于不同版本PyTorch支持的最低CUDA能力有所不同。 例如,如果拥有像NVIDIA GeForce RTX 3090这样的较新型号GPU,则可能会遇到`sm_86`不被现有PyTorch版本支持的情况[^2]。这是因为该类显卡基于更新颖的Ampere架构,而某些旧版PyTorch尚未提供对此架构的支持。具体来说,错误提示表明当前安装仅能识别`sm_37`, `sm_50`, `sm_60`, `sm_70`, 和 `sm_75`这几种计算能力等级的设备。 针对这种情况的一个解决方案是在Ubuntu环境下通过指定特定版本安装带有适当CUDA支持PyTorch镜像。例如,可以利用Anaconda环境管理器执行如下命令以获取兼容CUDA 10.0的PyTorch及其依赖项: ```bash conda install pytorch torchvision cudatoolkit=10.0 -c pytorch ``` 值得注意的是,除了考虑PyTorchCUDA之间的适配外,还需要注意NVIDIA驱动程序、cuDNN库以及其他编译器的要求。通常情况下,推荐使用至少CUDA 9.2及以上版本,并搭配相应级别的cuDNN v7或更高版本以及能够与CUDA协同工作的编译器[^3]。 另外一种方法是从官方渠道下载完整的CUDA Toolkit来进行本地化配置,尽管这种方式会引入额外组件如样本代码等,但对于专注于深度学习应用的研究人员而言并非必需[^5]。 总之,选择合适的组合取决于具体的硬件条件和个人偏好;然而始终要保持各软件栈间的相互兼容性至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值