基础概念
凸集
凸组合
凸包
凸集性质
凸锥(锥&凸集)
图a,C不是锥。
图b,C是锥,且C是凸集。
图c,C是锥,但C不是凸集。
多面集
凸集的代数表示
为什么要对凸集进行代数表示?
因为线性规划中的线性约束需要用到凸集表示。
极点
按此定义,图1.4.3中,图(a)中多边形的顶点x(1) ,x(2),x(3),x(4)和x(5) 是极点,而x(6)和x(7)不是极点.图(b)中圆周上的点均为极点。
在给定的两个凸集中,任何一点都能表示成极点的凸组合。这个论断对于紧凸集总是正确的,但是对于无界集并不成立。为处理无界集,需引入极方向的概念。
极方向
显然,有界集不存在方向,因而也不存在极方向.对于无界集才有方向的概念。
Ad=0的解是Ax=b的方向,二维空间中,A的法向量与方向d垂直。
Ax=b是Ax=0平移b个单位得到的。
Ax=b也叫线性流形或者仿射集。
紧凸集表示
紧凸集中,极点围成的多边形即为凸组合。
紧凸集中,只要找到所有极点,用极点围成的多边形(凸组合)即可表示紧凸集。
凸集表示定理
若为紧凸集,极方向集合为空,方向的正组合为0,紧凸集可以用极点的凸组合表示。
表示定理中的S使用的Ax=b,而不是Ax≥b,根据多面集的定义可知,S 表示特殊情况的多面集,即Ax≥b多面集的边界。
表示定理的通俗解释:多面集中任意一点都可以由极点凸组合与极方向正组合表示。
表示定理中的Ax=b是线性的,所以容易表示,如果是类似于||x||=b(圆),就不容易用极点表示。
凸集分离定理
凸集一定有分离定理,非凸集不一定有分离定理?
闭凸集性质(点在闭凸集上的映射)(为凸集分离定理证明做铺垫)
inf 上确界;sup 下确界;min 最小值;max 最大值。
有上确界下确界不一定有最小值最大值,例如 inf f ( x ) = 0 , x ∈ ( 0 , 1 ) \inf f(x)=0,x\in(0,1) inff(x)=0,x∈(0,1) 但是 min f ( x ) 不 存 在 , x ∈ ( 0 , 1 ) \min f(x)不存在,x\in(0,1) minf(x)不存在,x∈(0,1) 。
点与凸集分离定理
通俗理解:x属于S,y不属于S,必定存在一条直线P^Tx=α,将y与x分开。
凸集与凸集可分离
凸函数
凸函数性质
凸函数的根本重要性
凸函数判别
凸函数一阶判别法
凸函数二阶判别法
二阶充要条件
二阶充分条件
逆命题不成立,例如 y = x 4 y=x^4 y=x4。二阶导为 y = 12 x 2 y=12x^2 y=12x2 在x=0处y=0,所以二阶导不是正定,但 y = x 4 y=x^4 y=x4 是凸函数。
凸规划
凸优化问题
凸优化 Vs 非凸优化
为什么要区分凸优化与非凸优化?
凸优化问题拥有很多很好的性质。
凸优化性质
1 局部最优解=全局最优解
为什么凸优化问题的局部最优解=全局最优解?
2 凸规划问题(P)的解集为凸集
3 问题(P)为严格凸优化问题时,若存在最优解,则最优解唯一
4 凸规划问题(P)的全局最优解与稳定点等价
凸优化最优性条件(充要条件)