线性代数的深入理解

本文深入探讨线性代数中的核心概念,包括矩阵作为线性变换的描述,行列式表示变换比例及空间压缩,以及点积如何体现向量的线性变换。通过实例解析矩阵变换的几何意义,帮助读者更好地理解线性代数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数笔记

关于矩阵理解

reference:
矩阵理解
图片来源:b站上的教程

线性变换
  1. 所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁
  2. 矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。

比如有一头猪,你打算给它拍照片,只要你给照相机选定了一个镜头位置,那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述,但只是一个片面的的描述,因为换一个镜头位置给这头猪拍照,能得到一张不同的照片,也是这头猪的另一个片面的描述。所有这样照出来的照片都是这同一头猪的描述,但是又都不是这头猪本身。

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。 换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。

若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系就是相似:

A = P − 1 B P A=P^{-1}BP A=P1BP

那么重新来理解一下 $ Ma=b $ 等价于 M a = I b Ma=Ib Ma=Ib ,意思是说***在M坐标系里表示出来的向量a,跟在I坐标系里表示出来的向量b,其实根本就是一个向量!***

矩阵和向量的相乘,就是一个线性变换。假设 i ^ = [ 1 0 ] , j ^ = [ 0 1 ] \hat{i}=\left[ \begin{array}{c} 1\\ 0 \end{array} \right], \hat{j}=\left[ \begin{array}{c} 0 \\ 1 \end{array} \right] i^=[10],j^=[01]

是最开始的基向量,假设经过旋转变换,那么 i ′ = [ 0 1 ] , j ′ = [ − 1 0 ] i'=\left[ \begin{array}{c} 0\\ 1 \end{array} \right], j'=\left[ \begin{array}{c} -1 \\ 0 \end{array} \right] i=[01],j=[10]
I = [ i ^ j ^ ] = [ 1 0 0 1 ] , M = [ i ′ j ′ ] = [ 0 − 1 1 0 ] , a = [ 1 1 ] , b = [ − 1 1 ] I= \left[ \begin{array}{cc} \hat{i} & \hat{j} \end{array} \right]= \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], M= \left[ \begin{array}{cc} i' & j' \end{array} \right]= \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right], a= \left[ \begin{array}{c} 1 \\ 1 \end{array} \right], b= \left[ \begin{array}{cc} -1\\1 \end{array} \right] I=[i^j^]=[1001],M=[i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值