【头歌实训:单源最短路径】

头歌实训:单源最短路径
给一个n(1 ≤ n ≤ 2500) 个点 m(1 ≤ m ≤ 6200) 条边的无向图,求 s 到 t 的最短路。

输入格式:

第一行四个由空格隔开的整数 n、m、s、t。

之后的 m 行,每行三个正整数 si 、ti 、wi(1 ≤wi 1 0 9 10^{9} 109),表示一条从si到ti长度为wi的边。

输出格式:

一个整数,表示从s 到t 的最短路径长度。数据保证至少存在一条道路。

输入样例:
7 11 5 4
2 4 2
1 4 3
7 2 2
3 4 3
5 7 5
7 3 3
6 1 1
6 3 4
2 4 3
5 6 3
7 2 1

输出样例:

7

注意:

两个顶点之间可能存在多条直接相连的道路。

源代码:

#include <bits/stdc++.h>
using namespace std;
#include<iostream>
#define  N 3000
int e[N][N],dis[N],book[N];
int main(){
	
	int i,j,n,m,t1,t2,t3,u,v,min,s,t;
	int inf=99999999;

	cin>>n>>m>>s>>t;

//初始化
	for(i=1;i<=n;i++){
		for(j=1;j<=n;j++){
			if(i==j) e[i][j]=0;
				else e[i][j]=inf;
		}
	}
//读入边
	for(i=1;i<=m;i++)
	{
		cin>>t1>>t2>>t3;
		e[t1][t2]=t3;
		e[t2][t1]=t3;	//去掉该向变成有向图
	}

//初始化dis数组,这里1号顶点到其余各个顶点的初始路程
	for(i=1;i<=n;i++){
		dis[i]=e[s][i];
	}
//book数组初始化
	for(i=1;i<=n;i++)
		book[i]=0;

	book[i]=1;
//Dijkstra算法核心
	for(i=1;i<=n-1;i++){
		min=inf;	//找到离1号顶点最近的顶点
		for(j=1;j<=n;j++){

			if(book[j]==0 && dis[j]<min){
				min=dis[j];
				u=j;
			}

		}
		book[u]=1;

		for(v=1;v<=n;v++){
			if(e[u][v]<inf){

				if(dis[v]>dis[u]+e[u][v])
					dis[v]=dis[u]+e[u][v];
			}
		}
	}
	//输出结果
		cout<<dis[t];
		
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值