回归分析理论

本文详细介绍了回归分析中的线性模型,包括模型定义、参数估计、残差性质、假设性检验与区间估计。通过最小二乘法求解线性模型参数,并讨论了似然比检验、F检验以及置信区间的建立。同时,阐述了残差推断和模型诊断的重要性,如残差检验、异常值识别、高杠杆点和强影响点的判断。
摘要由CSDN通过智能技术生成

回归分析

  • 线性模型
    Y n × 1 = X n × p β p × 1 + e n × 1 Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+e_{n\times 1} Yn×1=Xn×pβp×1+en×1,其中 E e = 0 Ee=0 Ee=0,Y为响应变量,X为协变量, β \beta β为线性模型的参数,e为残差。通常对 e e e有两个假定:
         1. C o v ( e ) = σ 2 I n Cov(e)=\sigma^2I_n Cov(e)=σ2In,其中 σ 2 \sigma^2 σ2未知。
         2. e ∼ N ( 0 , σ 2 I n ) e \sim N(0,\sigma^2I_n) eN(0,σ2In),其中 σ 2 \sigma^2 σ2未知,比1强。
    即为残差之间相互独立且服从相同的正态分布。

  • 参数估计
        由最小二乘法思想: β \beta β的估计应该使得 Q ( B ) = ∣ ∣ e 2 ∣ ∣ = ∣ ∣ Y − X β ∣ ∣ 2 Q(B)=||e^2||=||Y-X\beta||^2 Q(B)=∣∣e2∣∣=∣∣Y2达到最小。若 β ^ \hat{\beta} β^使得 ∣ ∣ Y − X β ^ ∣ ∣ 2 = m i n β ∣ ∣ Y − X β ∣ ∣ 2 ||Y-X\hat{\beta}||^2=min_\beta||Y-X\beta||^2 ∣∣YXβ^2=minβ∣∣Y2,则称 β ^ \hat{\beta} β^ β \beta β的最小二乘解。则 β ^ = ( X ′ X ) − X ′ Y \hat{\beta}=(X'X)^-X'Y β^=(XX)XY
    r a n k ( X ) = p rank(X)=p rank(X)=p,则最小二乘估计有唯一解: β ^ = ( X ′ X ) − 1 X ′ Y \hat{\beta}=(X'X)^{-1}X'Y β^=(XX)1XY β ^ \hat{\beta} β^ β \beta β的无偏估计。 σ 2 ^ = ∣ ∣ Y − X β ^ ∣ ∣ 2 n − p \hat{\sigma^2}=\frac{||Y-X\hat{\beta}||^2}{n-p} σ2^=np∣∣YXβ^2,则有以下性质:
         1. E β ^ = β E\hat{\beta}=\beta Eβ^=β V a r ( β ^ ) = σ 2 ( X ′ X ) − 1 Var(\hat{\beta})=\sigma^2(X'X)^{-1} Var(β^)=σ2(XX)1 E σ 2 ^ = σ 2 E\hat{\sigma^2}=\sigma^2 Eσ2^=σ2
         2. β ^ ∼ N p ( β , σ 2 ( X ′ X ) − 1 ) \hat{\beta}\sim N_p(\beta,\sigma^2(X'X)^{-1}) β^Np(β,σ2(XX)1) ( n − p ) σ 2 ^ σ 2 ∼ χ 2 ( n − p ) \frac{(n-p)\hat{\sigma^2}}{\sigma^2}\sim \chi^2(n-p) σ2(np)σ2^χ2(np) β ^ \hat{\beta} β^ σ 2 ^ \hat{\sigma^2} σ2^相互独立。
    r a n k ( X ) < p rank(X)<p rank(X)<p,最小二乘解不唯一。此时最小二乘解中无 β ^ \hat{\beta} β^能作为 β \beta β的无偏估计。此外可以证明此时 β \beta β的无偏估计不存在,此时β 称为不可估的(nonestimable)。

  • 假设性检验与区间估计
        针对模型 Y n × 1 = X n × p β p × 1 + e n × 1 , e ∼ N ( 0 , σ 2 I n ) Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+e_{n\times 1}, e\sim N(0,\sigma^2I_n) Yn×1=Xn×pβp×1+en×1,eN(0,σ2In),设 r a n k ( X ) = r rank(X)=r rank(X)=r,矩阵 H m × p H_{m\times p} Hm×p已知,线性假设: H 0 : H β = 0 ; H 1 : H β ≠ 0 H_0: H\beta=0; H_1: H\beta\neq0 H0:Hβ=0;H1:Hβ=0,不失一般性 r a n k ( H ) = m rank(H)=m rank(H)=m,检验 H 0 H_0 H0
    似然比检验:对于线性模型,似然函数为 L ( Y ; σ 2 , β ) = ( 1 2 π σ ) n e x p ( ∣ ∣ Y − X β ∣ ∣ 2 2 σ 2 ) L(Y;\sigma^2,\beta)=(\frac{1}{\sqrt{2\pi\sigma}})^nexp(\frac{||Y-X\beta||^2}{2\sigma^2}) L(Y;σ2,β)=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值