自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 排序:智能收件箱

R语言机器学习实践之排序:智能收件箱 邮件的优先级划分需要综合多种因素,诸如社交特征(比如跟什么人来往的频率较高)、发件人发件的频率、邮件的类型(比如一些广告邮件,通常很少回复)、对邮件进行的动作(是否在短时间内回复)、邮件关键字、主题等等。本案例通过对邮件优先级特征的提取,建立邮件优先级排序算法,对邮件进行优先级排序。主要练习了特征提取的方法以及R语言的操作。 一、 特征分析 一封邮件是否应该

2016-08-07 21:49:59 1027

原创 垃圾分类

机器学习实践:垃圾邮件分类 这个案例是通过训练一个朴素贝叶斯分类器,对垃圾邮件进行判别,使用R语言进行操作。朴素贝叶斯算法是一种简单高效的分类算法,利用贝叶斯定理,通过简单的概率计算对样本进行分类。算法的基本假设是各个事件之间相互独立,假如A与B相互独立,则有:P(AB) = P(A)*P(B)。当有多个事件时,这些事件同时发生的概率就等于这些事件独立发生的概率的连乘积。具体到这个案例,假如一封

2016-08-03 21:25:28 2977

原创 R语言分析南京房价

**#################################################本项目分析南京房价数据,数据来源:链家网autho:owl前言:本文利用网上爬取的南京二手房信息,利用R进行简单分析,数据做仅学习研究练习用,侵删首先读取数据,数据为.csv格式houseprice = read.csv("E:/houseprice.csv",stringsAsFactors =

2016-07-12 09:09:17 6296 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除