Spark RDD案例:统计每日新增用户

一、提出任务

  • 已知有以下用户访问历史数据,第一列为用户访问网站的日期,第二列为用户名:
2022-01-01,mike
2022-01-01,alice
2022-01-01,brown
2022-01-02,mike
2022-01-02,alice
2022-01-02,green
2022-01-03,alice
2022-01-03,smith
2022-01-03,brian

  • 现需要根据上述数据统计每日新增的用户数量,期望统计结果:
2022-01-01,3
2022-01-02,1
2022-01-03,2

二、完成任务

(一)新建Maven项目

  • 设置项目信息(项目名、保存位置、组编号、项目编号)
    在这里插入图片描述

  • 将java目录改成scala目录

在这里插入图片描述

(二)添加相关依赖和构建插件

  • 在pom.xml文件里添加依赖与Maven构建插件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.llj.spark</groupId>
    <artifactId>SparkGradeTopNSQL</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>


</project>

(三)创建日志属性文件

  • 在资源文件夹里创建日志属性文件 - log4j.properties
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(四)创建计算平均分单例对象

  • net.llj.rdd包里创建SparkRDDRows单例对象
  • 在这里插入图片描述
package net.llj.rdd

import org.apache.spark.{SparkConf, SparkContext}

object SparkRDDRows {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("SparkRDDWordCount") //设置应用名称
      .setMaster("local[*]") //设置主节点位置


    //基于Spark配置对象创建Spark容器
    val rdd1 = new SparkContext(conf);
    val rdd2 = rdd1.textFile("hdfs://192.168.1.120:9000/data/time.txt") //读取文件
    val rdd3 =  rdd2.filter(line=> !line.isEmpty)
      .map(
        line =>{
          val fields = line.split(",")
          (fields(1),fields(0))
        }
      )
      .groupByKey()
      .map(line=>(line._2.min,1))

    val result = rdd3.countByKey()
    result.keys.foreach(key => println(key + "," + result(key)))

    //停止Spark容器,结束任务
    rdd1.stop()
  }
}

(五)按键计数,得到每日新增用户数

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值